Invited Special Paper

Impact of solar activity on Earth’s climate 

Expand
  • State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), Beijing 100029, China 

Received date: 2021-10-08

  Online published: 2021-12-21

Abstract

Solar radiation is the energy source of the Earth system and the fundamental driving force of climate formation and evolution. The variation of solar radiation reaching the Earth is closely related to the Earth’s climate on a long time scale, such as thousands years. But on time scales of hundreds years and less, it is not clear whether solar activity has a significant impact on climate. Solar activity can affect the Earth’s climate in many ways, and the process is extremely complex. The response of climate system to solar forcing is nonlinear, which results in great uncertainty of the influence of solar activity on climate. In this paper, we summarize the recent studies on the effects of solar activity on the Earth’s climate, and discuss the key factors and possible pathways of the effects of solar activity on the Earth’s climate on the interannual and decadal scales, as well as the sensitive areas and key linkages of the climate system in response to solar activity changes.

Cite this article

XIAO Ziniu . Impact of solar activity on Earth’s climate [J]. Chinese Journal of Nature, 2021 , 43(6) : 408 -419 . DOI: 10.3969/j.issn.0253-9608.2021.06.003

References

[1] 丁仲礼. 米兰科维奇冰期旋回理论: 挑战与机遇[J]. 第四纪研究, 2006, 26(5): 710-717. 

[2] LASKAR J, ROBUTEL P, JOUTEL F, et al. A long-term numerical solution for the insolation quantities of the Earth [J]. Astronomy and Astrophysics, 2004, 428: 261-285. 

[3] HAYS J D, OPDYKE N D, SHACKLET N J. Details of a magnetic excursion as seen in a piston core from southern Indian-Ocean [J]. Transactions-American Geophysical Union, 1974, 55(4): 237. 

[4] EDDY J A. The maunder minimum [J]. Science, 1976, 192: 1189- 1202. 

[5] MOBERG A, SONECHKIN D M, HOLMGREN K, et al. Corrigendum: Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data [J]. Nature, 2006, 439: 1014. 

[6] FOUKAL P, FROHLICH C, SPRUIT H, et al. Variations in solar luminosity and their effect on the Earth’s climate [J]. Nature, 2006, 443: 161-166. DOI: 10.1038/nature05072. 

[7] HERSCHEL W. Observations tending to investigate the nature of the sun, in order to find the causes or symptoms of its variable emission of light and heat; with remarks on the use that may possibly be drawn from solar observations [J]. Proceedings of the Royal Society of London, 1800. DOI: 10.1098/rspl.1800.0032. 

[8] MEEHL G A, ARBLASTER J M, BRANSTATOR G, et al. A coupled air-sea response mechanism to solar forcing in the Pacific region [J]. Journal of Climate, 2008, 21: 2883-2897. DOI: 10.1175/2007JCLI1776.1. 

[9] SHAVIV N J. Using the oceans as a calorimeter to quantify the solar radiative forcing [J]. Journal of Geophysical Research, 2008, 113: A11101. DOI: 10.1029/2007JA012989.

[10] CROOKS S A, GRAY L J. Characterization of the 11-year solar signal using a multiple regression analysis of the ERA-40 dataset [J]. Journal of Climate, 2005, 18: 996-1015. DOI: 10.1175/JCLI3308.1. 

[11] KODERA K, KURODA Y. Dynamical response to the solar cycle: Winter stratopause and lower stratosphere [J]. Journal of Geophysical Research, 2002, 107 (D24): 4749. DOI: 10.1029/2002JD002224. 

[12] MATTHES K, KURODA Y, KODERA K, et al. Transfer of the solar signal from the stratosphere to the troposphere: northern winter [J]. Journal of Geophysical Research, 2006, 111(D6): D06108. DOI: 10.1029/2005JD006283. 

[13] GRAY L J, BEER J, GELLER M, et al. Solar influences on climate [J]. Reviews of Geophysics, 2010, 48: RG4001. DOI: 10.1029/2009RG000282. 

[14] DRUMMOND A J, HICKEY J R, SCHOLES W J. New value for the solar constant of radiation [J]. Nature, 1968, 218(20): 259-261. 

[15] LAURE E G, DRUMMOND A J. Solar constant: first direct measurements [J]. Science, 1968, 161(3844): 888-891. 

[16] THEKAEKARA M P, DRUMMOND A J. Standard values for the solar constant and its spectral components [J]. Nat Phys Sci, 1971, 229: 6-9. 

[17] WILLSON R C, HUDSON H S. The Sun’s luminosity over a complete solar cycle [J]. Nature, 1991, 351: 42-44. 

[18] NAGOVITSYN Y A. Variations in the cyclic characteristics of solar magnetic activity on long time scales [J]. Geomagnetism and Aeronomy, 2014, 54(6): 673-679. DOI: 10.1134/ S0016793214060139. 

[19] 王绍武. 全球气候变暖的争议[J]. 科学通报, 2010, 55(16): 1529- 1531. 

[20] IPCC. Climate change 2013 — the physical science basis: Working group I contribution to the fifth assessment report of the intergovernmental panel on climate change [M]. Cambridge: Cambridge University Press, 2013: 1-30. 

[21] 李崇银, 翁衡毅, 高晓清, 等. 全球增暖的另一可能原因初探[J]. 大气科学, 2003, 27(5): 789-797. 

[22] 李崇银. 太阳活动变化及其对地球气候的影响值得关注[J]. 气象 科技进展, 2014, 4(4): 6-8. 

[23] 黄静, 周立旻, 肖子牛, 等. 天气尺度到气候尺度太阳风变速对中 高纬大气环流的影响[J]. 空间科学学报, 2013, 33(6): 637-644. 

[24] ZHOU L, TINSLEY B, HUANG J. Effects on winter circulation of short and long term solar wind changes [J]. Advances in Space Research, 2014, 54(12): 2478-2490. DOI: 10.1016/ j.asr.2013.09.017. 

[25] XIAO Z, LI D. Solar wind: A possible factor driving the interannual sea surface temperature tripolar mode over North Atlantic [J]. Journal of Meteorological Research, 2016, 30(3): 312-327. DOI: 10.1007/s13351-016-5087-1. 

[26] KHAIN A, ARKHIPOV M, PINSKY V, et al. Rain enhancement and fog elimination by seeding with charged droplets. Part I: theory and numerical simulations [J]. Journal of Applied Meteorology, 2004, 43: 1513-1529. DOI: 10.1175/JAM2131.1. 

[27] TINSLEY B A, ZHOU L. Changes in scavenging rate coefficients due to electric charge on droplets and particles [J]. AIP Conference Proceedings, 2013, 1527: 797-800. DOI: 10.1063/1.4803392. 

[28] TINSLEY B A, ZHOU L. Comments on “Effect of electric charge on collisions between cloud droplets” [J]. Journal of Applied Meteorology and Climatology, 2014, 53(5): 1317-1320. DOI: 10.1175/JAMC-D-13-0244.1. 

[29] TINSLEY B A, ZHOU L. Parameterization of aerosol scavenging due to atmospheric ionization [J]. Journal of Geophysical Research: Atmospheres, 2015, 120: 8389-8410. DOI: 10.1002/2014JD023016. 

[30] TINSLEY B A, ROHRBAUGH R P, HEI M, et al. Effects of image charges on the scavenging of aerosol particles by cloud droplets and on droplet charging and possible ice nucleation processes [J]. J Atmospheric Sciences, 2000, 57: 2118-2134. 

[31] ZHOU L, TINSLEY B A. Production of space charge at the boundaries of layer clouds [J]. Journal of Geophysical Research: Atmospheres, 2007, 112: D11203. DOI: 10.1029/2006JD007998. 

[32] MARSH N, SVENSMARK H. Galactic cosmic ray and El Niño– Southern Oscillation trends in International Satellite Cloud Climatology Project D2 low-cloud properties [J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D6): 4195. DOI: 10.1029/2001JD001264. 

[33] 肖子牛, 霍文娟. 太阳活动影响气候的放大过程之时空选择性[J]. 气象科技进展, 2016, 6(3): 141-147. 

[34] MEEHL G A, ARBLASTER J M, MATTHES K, et al. Amplifying the Pacific climate system response to a small 11 year solar cycle forcing [J]. Science, 2009, 325: 1114-1118. DOI: 10.1126/ science.1172872. 

[35] LEE J N, SHINDELL D T, HAMEED S. The influence of solar forcing on tropical circulation [J]. Journal of Climate, 2009, 22: 5870-5885. 

[36] TUNG K K, ZHOU J. The Pacific’s response to surface heating in 130yr of SST: La Niña-like or El Niño-like? [J]. Journal of the Atmospheric Sciences, 2010, 67: 2649-2657. DOI: 10.1175/2010JAS3510.1. 

[37] ZHAO L, WANG J, ZHAO H. Solar cycle signature in decadal variability of monsoon precipitation in China [J]. Journal of the Meteorological Society of Japan, 2012, 90(1): 1-9. DOI:10.2151/ jmsj.2012-101. 

[38] XIAO Z, LIAO Y, LI C. Possible impact of solar activity on the convection dipole over the tropical pacific ocean [J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2016, 140: 94-107. 

[39] WHITE W B, LEAN J, CAYAN D R, et al. Response of global upper ocean temperature to changing solar irradiance [J]. Journal of Geophysical Research, 1997, 102: 3255-3266. DOI: 10.1029/96JC03549. 

[40] VAN LOON H, MEEHL G A. The response in the Pacific to the sun’s decadal peaks and contrasts to cold events in the Southern Oscillation [J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2008, 70: 1046-1055. DOI: 10.1016/j.jastp. 2008.01.009. 

[41] MEEHL G A, ARBLASTER J M. A lagged warm event-like response to peaks in solar forcing in the Pacific region [J]. Journal of Climate, 2009, 22: 3647-3660. DOI: 10.1175/2009JCLI2619.1. 

[42] INDRANI R. The role of the sun in atmosphere-ocean coupling [J]. International Journal of Climate, 2014, 34: 655-677. DOI: 0.1002/ joc.3713. 

[43] HAIGH J D. The impact of solar variability on climate [J]. Science, 1996, 272: 981-984. 

[44] RUZMAIKIN A. Can El Nino amplify the solar forcing of climate?[J]. Geophysical Research Letters, 1999, 26(15): 2255- 2258. [45] MISIOS S, SCHMIDT H. Mechanisms involved in the amplification of the 11-yr solar cycle signal in the tropical Pacific Ocean [J]. J Climate, 2012, 25(14): 5102-5118. 

[46] HUO W J, XIAO Z N. Anomalous pattern of ocean heat content during different phases of the solar cycle in the tropical Pacific [J]. Atmospheric and Oceanic Science Letters, 2017, 10(1): 9-16. 

[47] HUO W, XIAO Z. The impact of solar activity on the 2015/16 El Nino event [J]. Atmospheric and Oceanic Science Letters, 2016, 9(6): 1-8. DOI: 10.1080/16742834.2016.1231567. 

[48] BALACHANDRAN N K, RIND D. Modeling the effects of UV variability and the QBO on the troposphere-stratosphere system. Part I: The middle atmosphere [J]. Journal of Climate, 1995, 8: 2058-2079. 

[49] WANG G, YAN S X, QIAO F L. Decadal variability of upper ocean heat content in the Pacific: Responding to the 11-year solar cycle [J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2015, 135: 101-106. 

[50] HUO W J, XIAO Z N, WANG X, et al. Lagged responses of the tropical Pacific to the 11-yr solarcycle forcing and possible mechanisms [J]. Journal of Meteorological Research, 2021, 35(3): 444-459. DOI: 10.1007/s13351-021-0137-8.

 [51] LI D L, XIAO Z N. Can solar cycle modulate the ENSO effect on the Pacific/North American pattern?[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2018, 167: 30-38. 

[52] ZHOU L, TINSLEY B, HUANG J. Effects on winter circulation of short and long term solar wind changes [J]. Advances in Space Research, 2014, 54: 2478-2490. 

[53] LI D, XIAO Z, ZHAO L. Preferred solar signal and its transfer in the Asian-Pacific subtropical jet region [J]. Climate Dynamics, 2019, 52(16): 5173-5187. DOI:10.1007/s00382-018-4443-5. 

[54] GRAY L J, CROOKS S, PASCOE C, et al. Solar and QBO influences on the timing of stratospheric sudden warmings [J]. Journal of the Atmospheric Sciences, 2004, 61(23): 2777-2796. DOI: 10.1175/JAS-3297.1. 

[55] HAIGH J D, BLACKBURN M. Solar influences on dynamical coupling between the stratosphere and troposphere [J]. Space Science Reviews, 2006, 125: 331-344. DOI: 10.1007/s11214-006-9067-0. 

[56] KODERA K, THIÉBLEMONT R, YUKIMOTO S, et al. How can we understand the global distribution of the solar cycle signal on the Earth's surface?[J]. Atmospheric Chemistry and Physics, 2016, 16: 12925-12944. DOI: 10.5194/acp-16-12925-2016. 

[57] HAIGH D J, BLACKBURN M, DAY R. The response of tropospheric circulation to perturbations in lower-stratospheric temperature [J]. Journal of Climate, 2005, 18: 3672-3685. DOI: 10.1175/JCLI3472.1. 

[58] GRAY L J, BEER J, GELLER M, et al. Solar influences on climate [J]. Reviews of Geophysics, 2010, 48: RG4001. DOI: 10.1029/2009RG000282. 

[59] LABITZKE K, KUNZE M, BRÖNNIMANN S, et al. Sunspots, the QBO, and the stratosphere in the north polar region: an update [M]//Climate Variability and Extremes during the Past 100 Years, Advances in Global Change Research, Vol 33. Dordrecht: Springer, 2007: 347-357. DOI: 10.1007/978-1-4020-6766-2_24. 

[60] SHINDELL D T, SCHMIDT G A, MILLER R L, et al. Northern Hemisphere winter climate response to greenhouse gas, ozone, solar, and volcanic forcing [J]. Journal of Geophysical Research, 2001, 106: 7193-7210. DOI: 10.1029/2000JD900547. 

[61] HUTH R, BOCHNÍČEK J, HEJDA P, et al. The 11-year solar cycle affects the intensity and annularity of the Arctic Oscillation [J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2007, 69: 1095-1109. DOI: 10.1016/j.jastp.2007.03.006. 

[62] KODERA K. Solar influence on the spatial structure of the NAO during the winter 1900-1999 [J]. Geophysical Research Letters, 2003, 30(4): 1175. DOI: 10.1029/2002GL016584. 

[63] 王瑞丽, 肖子牛, 朱克云, 等. 太阳活动变化对东亚冬季气候的非 对称影响及可能机制[J]. 大气科学, 2015, 39(4): 815-826. DOI: 10.3878/j.issn.1006-9895.1410.14211. 

[64] MALINIEMI V, ASIKAINEN T, MURSULA K. Spatial distribution of Northern Hemisphere winter temperatures during different phases of the solar cycle [J]. Journal of Geophysical Research: Atmospheres, 2014, 119(16): 9752-9764. DOI: 10.1002/2013JD021343. 

[65] 潘静, 李崇银, 顾薇. 太阳活动对中国东部夏季降水异常的可能 影响[J]. 气象科学, 2010, 5: 574-581. 

[66] WANG J, ZHAO L. Statistical tests for a correlation between decadal variation in June precipitation in China and sunspot number [J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D23): D23117. DOI: 10.1029/2012JD018074. 

[67] ZHAO L, WANG J. Robust response of the East Asian monsoon rainband to solar variability [J]. Journal of Climate, 2014, 27(8): 3043-3051. DOI: 10.1175/JCLI-D-13-00482.1.

Outlines

/