Brief Introduction of Nobel Prize

2021 Nobel Prize in Physics: A new era of complex systems science  

Expand
  • ①Beijing Normal University, Beijing 100875, China; ②Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China; ③University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2021-11-19

  Online published: 2021-12-21

Abstract

The Nobel Prize in Physics 2021 was awarded to three scientists for groundbreaking contributions to our understanding of complex physical systems. Syukuro Manabe and Klaus Hasselmann shared half of the prize for the physical modelling of Earth’s climate, quantifying variability and reliably predicting global warming. Giorgio Parisi received the other half of the prize for the discovery of the interplay of disorder and fluctuations in physical systems from atomic to planetary scales. In this article, we reviewed their scientific contributions.

Cite this article

FAN Jingfang, JIN Yuliang . 2021 Nobel Prize in Physics: A new era of complex systems science  [J]. Chinese Journal of Nature, 2021 , 43(6) : 441 -450 . DOI: 10.3969/j.issn.0253-9608.2021.06.006

References

[1] STEFFEN W, RICHARDSON K, ROCKSTROM J, et al. The emergence and evolution of Earth system science [J]. Nat Rev Earth Environ, 2020, 1(1): 54-63. 

[2] 汪品先. 对地球系统科学的理解与误解——献给第三届地球系 统科学大会[J]. 地球科学进展, 2014, 29(11): 1277. 

[3] SCHELLNHUBER H J. ‘Earth system’ analysis and the second copernican revolution [J]. Nature, 1999, 402(6761): C19-C23. 

[4] MCGUFFIE K, SELLERS A H. The climate modelling primer [J]. International Journal of Environmental Studies, 2014, 71(4): 581- 582. 

[5] MANABE S, WETHERALD R. Thermal equilibrium of the atmosphere with a given distribution of relative humidity [J]. Journal of the Atmospheric Sciences, 1967, 24: 241-259. 

[6] MANABE S, WETHERALD R T. The effects of doubling the CO2 concentration on the climate of a general circulation model [J]. Journal of the Atmospheric Sciences, 1975, 32(1): 3-15. 

[7] MANABE S, BRYAN K. Climate calculations with a combined ocean-atmosphere model [J]. Journal of the Atmospheric Sciences, 1969, 26: 786-789. 

[8] HASSELMANN K. Stochastic climate models part I. Theory [J]. Tellus, 1976, 28 (6): 473-485.

[9] Popular Science Background. They found hidden patterns in the climate and in other complex phenomena [EB/OL]. [2021- 11-20]. https://www.nobelprize.org/uploads/2021/10/popularphysicsprize2021.pdf. 

[10] PARISI G, WU Y S. Perturbation theory without gauge fixing [J]. Sci Sin, 1981, 24(4): 483-496. [11] DEBENEDETTI P G, STANLEY H E. Supercooled and glassy water [J]. Physics Today, 2003, 56(6): 40-46. 

[12] MÉZARD M, PARISI G, VIRASORO M A. Spin glass theory and beyond: An introduction to the replica method and its applications [M]. Singapore: World Scientific Publishing Company, 1987. 

[13] EDWARDS S F, ANDERSON P W. Theory of spin glasses [J]. Journal of Physics F: Metal Physics, 1975, 5(5): 965. 

[14] SHERRINGTON D, KIRKPATRICK S. Solvable model of a spinglass [J]. Physical Review Letters, 1975, 35(26): 1792. 

[15] PARISI G. Infinite number of order parameters for spin-glasses [J]. Physical Review Letters, 1979, 43(23): 1754-1756. 

[16] DE ALMEIDA J R L, THOULESS D J. Stability of the SherringtonKirkpatrick solution of a spin glass model [J]. Journal of Physics A: Mathematical and General, 1978, 11(5): 983. 

[17] PARISI G, URBANI P, ZAMPONI F. Theory of simple glasses: exact solutions in infinite dimensions [M]. Cambridge: Cambridge University Press, 2020. 

[18] YOSHINO H. From complex to simple: hierarchical free-energy landscape renormalized in deep neural networks [J]. SciPost Physics Core, 2020, 2(2): 5. 

[19] DE GIULI E, ZEE A. Glassy gravity [J]. Europhysics Letters, 2021, 133(2): 20008.

Outlines

/