Invited Special Paper

Evolutions, functions and conservations of mountains-rivers-forests-croplands-lakesgrasslands-deserts system 

Expand
  • ① State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;② Department of Ecology, College of Urban and Environmental Sciences, Institute of Ecology, Peking University, Beijing 100871, China

Received date: 2021-09-22

  Online published: 2022-02-21

Abstract

 Mountains-rivers-forests-croplands-lakes-grasslands-deserts system is a brief summary and easy-to-understanding description of China’s diversified ecosystems. Despite the significant differences in the appearance and structures, mountains, rivers, forests, croplands, lakes, grasslands, and deserts together constitute a “community of life” through complex interconnections and interactions, providing material foundations and necessary conditions for the development of human society. At present, the integrated management, protection and restoration of the system have been an important starting point to promote the construction of ecological civilization in China. We summarize the background information on each component of the system, and briefly describe their formations and main functions. Meanwhile, we discuss how to conduct the governance, conservation and utilization of the system in the context of ecological civilization construction, review several cases which showed negative impacts on the environments, and briefly elaborate the measurements for ecological civilization construction from the perspective of ecology.

Cite this article

SHI Yue, ZHAO Xia, ZHU Jiangling, FANG Jingyun . Evolutions, functions and conservations of mountains-rivers-forests-croplands-lakesgrasslands-deserts system [J]. Chinese Journal of Nature, 2022 , 44(1) : 1 -18 . DOI: 10.3969/j.issn.0253-9608.2022.01.001

References

[1]新华社. 建设人与自然和谐共生的美丽中国——以习近平同志为核心的党中央推进生态文明建设纪实[N]. 人民日报, 2021-06- 05(1).

[2]中国科学院《中国自然地理》编委会. 中国自然地理总论[M]. 北京: 科学出版社, 1985. 

[3] UNEP-WCMC. Mountain watch: environmental change and sustainable development in mountains [M]. Cambridge, UK: UNEPWCMC, 2002. 

[4] GUTIÉRREZ M. Geomorphology [M]. Translated by BOBECK P. Boca Raton, USA: Taylor & Francis Group CRC Press, 2013.

[5]中华人民共和国水利部. 河道等级划分办法(内部试行)[Z]. 水利部水管〔1994〕106号, 1994. 

[6] TUNDISI J G, MATSUMURA-TUNDISI T. Limnology [M]. Boca Raton, USA: Taylor & Francis Group CRC Press, 2011. 

[7] DODDS W K, WHILES M R. Freshwater ecology: concepts and environmental applications of limnology [M]. 3rd ed. London, UK: Elsevier Academic Press, 2019. 

[8] TAO S L, FANG J Y, MA S H, et al. Changes in China’s lakes: climate and human impacts [J]. Nature & Science Review, 2020, 7: 132-140. 

[9] TAO S L, ZHANG H, FENG Y H, et al. Changes in China’s water resources in the early 21st century [J]. Frontiers in Ecology & the Environment, 2020, 18: 188-193. 

[10] CHAPIN F S III, MATSON P A, VITOSECK P M. Principles of terrestrial ecosystem ecology [M]. 2nd ed. New York, USA: Springer New York, 2011. 

[11] BOX E O, FUJIWARA K. Vegetation types and their broad-scale distribution//VAN DER MAAREL E, FRANKLIN J. Vegetation ecology [M]. 2nd ed. Chichester, UK: Wiley-Blackwell Publications, 2013. 

[12] BECK H E, ZIMMERMANN N E, MCVICAR T R, et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution [J]. Scientific Data, 2018, 5: 180214. 

[13] FANG J Y. Re-discussion about the forest vegetation zonation in eastern China [J]. Acta Botanica Sinica, 2001, 43: 522-533.

[14] 吴炳方, 苑全治, 颜长珍, 等. 21世纪前十年的中国土地覆盖变化 [J]. 第四纪研究, 2014, 34: 723-731. 

[15] CONDIE K. Earth as an evolving planetary system [M]. San Diego, USA: Elsevier Academic Press, 2005. 

[16] STEFFEN W, SANDERSON A, TYSON P D, et al. Global change and the Earth system: a planet under pressure [M]. 2nd ed. New York, USA: Springer, 2005. 

[17] 宋永昌. 中国东部森林植被带划分之我见[J]. 植物学报, 1999, 41: 541-552. 

[18] FANG J Y, SONG Y C, LIU H Y, et al. Vegetation-climate relationship and its application in the division of vegetation zone in China [J]. Acta Botanic Sinica, 2002, 44: 1105-1122. 

[19] GABLER R E, PETERSEN J F, TRAPASSO L M. Essentials of physical geography [M]. 8th ed. Belmont, Canada: Thomson-Brooks Publications, 2006. 

[20] 侯学煜. 中国自然地理-植物地理(下): 中国植被地理[M]. 北京: 科学出版社, 1988. 

[21] 中国科学院中国植被图编辑委员会. 中国植被及其地理格局: 中华人民共和国植被图(1:100万)说明书[M]. 北京: 地质出版社, 2007. 

[22] 吴征镒. 中国植被[M]. 北京: 科学出版社, 1980. 

[23] 孙世洲. 关于中国国家自然地图集中的中国植被区划图[J]. 植物 生态学报, 1998, 22: 523-537. 

[24] 金振州. 云南热带、亚热带山地灌草丛植被特点及利用途径[J]. 植物生态学与地植物学学报, 1986, 10: 81-89.

 [25] PRINGLE H. The slow birth of agriculture [J]. Science, 1998, 282: 1446. 

[26] 秦岭. 中国农业起源的植物考古研究与展望[J]. 考古学研究, 2012, 9: 260-315.

[27] 宫本一夫. 神話から歴史へ 神話時代 夏王朝[M]. 日本东京: 讲 谈社, 2020. 

[28] 裴安平. 史前广谱经济与稻作农业[J]. 中国农史, 2008, 28: 3-13. 

[29] 丁金龙. 长江下游新石器时代水稻田与稻作农业的起源[J]. 东南文化, 2004, 20: 19-23. 

[30] 陈强强, 刘峰贵, 方修琦, 等. 新石器时代晚期华北地区耕地重建 [J]. 地理研究, 2019, 38: 2927-2940. 

[31] OBRUCHEV V. Fundamentals of geology [M]. Translated by MYSHNE D & LUDWICK P. Hawaii, USA: University Press of the Pacific, 2005.

[32] OLLIER C, PAIN C. The origin of mountains [M]. London, UK: Taylor & Francis Group Routledge Publications, 2005. 

[33] 钟祥浩, 余大富, 郑霖, 等. 山地学概论与山地学研究[M]. 成都: 四川科学技术出版社, 2000. 

[34] MOORE W G. The Penguin dictionary of geography [M]. 5th ed. New York, USA: Penguin Books, 1978. 

[35] JAIN S. Fundamentals of physical geology [M]. New Delhi: Springer India, 2014. 

[36] 夏邦栋. 地质学原理[M]. 2版. 北京: 地质出版社, 1995. 

[37] PERRON J T, RICHARDSON P W, FERRIER K L, et al. The root of branching river networks [J]. Nature, 2012, 492: 100-103.

[38] HORTON R E. Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology [J]. GSA Bulletin, 1945, 56: 275-370. 

[39] CHARLTON R. Fundamentals of fluvial geomorphology [M]. London, UK: Taylor & Francis Group Routledge Publications, 2007.

[40] SHIKLOMANOV I A. Origin, resources and distribution of rivers and streams [M]//DOOGE J C I. Fresh surface water. Paris, France: UNESCO-EOLSS, 2009. 

[41] HUTCHINSON G E. A treatise on limnology. Vol. I. Geography physics and chemistry [M]. New York, USA: John Wiley & Sons, 1957. 

[42] 王苏民, 窦鸿身. 中国湖泊志[M]. 北京: 科学出版社, 1998. 

[43] CARPENTER S R. Submersed vegetation: an internal factor in lake ecosystem succession [J]. The American Naturalist, 1981, 118: 372- 383. 

[44] HARPER D. Eutrophication of freshwaters [M]. London, UK: Chapman and Hall, 1992. 

[45] BERGER E, FRÖR O, SCHÄFER R B. Salinity impacts on river ecosystem processes: a critical mini-review [J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 379: 20180010. 

[46] BANERJEE O, CROSSMAN N D, DE GROOT R. Ecological processes, functions and ecosystem services: inextricable linkages between wetlands and agricultural systems [M]//WRATTEN S, SANDHU H, CULLEN R, et al. Ecosystem services in agricultural and urban landscapes. 1st ed. Chichester, UK: Wiley-Blackwell Publications, 2013. 

[47] BROCKERHOFF E G, BARBARO L, CASTAGNEYROL B, et al. Forest biodiversity, ecosystem functioning and the provision of ecosystem services [J]. Biodiversity and Conservation, 2017, 26: 3005-3035. 

[48] COSTANZA R, D'ARGE R, DE GROOT R, et al. The value of the world’s ecosystem services and natural capital [J]. Nature, 1997, 387: 253-260. 

[49] 张彪, 谢高地, 肖玉, 等. 基于人类需求的生态系统服务分类[J]. 中国人口·资源与环境, 2010, 20: 64-67. 

[50] BRAUMAN K A, DAILY G C, DUARTE T K, et al. The nature and value of ecosystem services: an overview highlighting hydrologic services [J]. Annual Review of Environment and Resources, 2007, 32: 1, 67-98. 

[51] 赵同谦, 欧阳志云, 郑华, 等. 中国森林生态系统服务功能及其价值评价[J]. 自然资源学报, 2004, 19: 480-491. 

[52] 刘世荣, 蒋有绪, 史作民, 等. 中国暖温带森林生物多样性研究 [M]. 北京: 中国科学技术出版社, 1998. 

[53] MELICK D, YANG X, XU J. Seeing the wood for the trees: how conservation policies can place greater pressure on village forests in southwest China [J]. Biodiversity and Conservation, 2007, 16: 1959- 1971. 

[54] FANG J Y, YU G R, LIU L L, et al. Climate change, human impacts, and carbon sequestration in China [J]. Proceedings of the National Academy of Sciences, 2018, 115: 4015-4020. 

[55] 张永利, 杨锋伟, 王兵, 等. 中国森林生态系统服务功能研究[M]. 北京: 科学出版社, 2010. 

[56] 任继周. 草地农业生态系统通论[M]. 合肥: 安徽教育出版社, 2004. 

[57] 中华人民共和国农业部兽医司, 全国畜牧兽医总站. 中国草地资源[M]. 北京: 中国科学技术出版社, 1996. 

[58] 谢高地, 张彩霞, 张昌顺, 等. 中国生态系统服务的价值[J]. 资源科学, 2015, 37: 1740-1746. 

[59] 荒漠生态系统服务功能监测与评估技术研究项目组. 荒漠生态系统功能评估与服务价值研究[M]. 北京: 科学出版社, 2014. 

[60] BENGTSSON J, BULLOCK J M, EGOH B, et al. Grasslands—more important for ecosystem services than you might think [J]. Ecosphere, 2019, 10: e02582. 

[61] 白永飞, 赵玉金, 王扬, 等. 中国北方草地生态系统服务评估和功 能区划助力生态安全屏障建设[J]. 中国科学院院刊, 2020, 38: 675-689. 

[62] TANG X L, ZHAO X, BAI Y F, et al. Carbon pools in China’s terrestrial ecosystems [J]. Proceedings of the National Academy of Sciences, 2018, 115: 4021-4026. 

[63] 赵同谦, 欧阳志云, 郑华, 等. 草地生态系统服务功能分析及其评 价指标体系[J]. 生态学杂志, 2004, 23: 155-160. 

[64] ABU-AWWAD A M. Water infiltration and redistribution within soils affected by a surface crust [J]. Journal of Arid Environments, 1997, 37: 231-242. 

[65] 范念念, 吴保生, 田富强. 沙地地区水文过程及模拟——以秃尾河流域为例[J]. 水文, 2013, 33: 12-17. 

[66] ACIEGO S M, RIEBE C S, HART S C, et al. Dust outpaces bedrock in nutrient supply to montane forest ecosystems [J]. Nature Communications, 2017, 8: 14800. 

[67] 谢高地, 肖玉. 农田生态系统服务及其价值的研究进展[J]. 中国生态农业学报, 2013, 21: 645-651. 

[68] 李文华, 刘某承, 闵庆文. 农业文化遗产保护: 生态农业发展的新契机[J]. 中国生态农业学报, 2012, 20: 663-667. 

[69] KÖRNER C. Mountain biodiversity, its causes and function[J]. AMBIO: A Journal of the Human Environment, 2004, 33(SP13): 11- 17.

[70] HASLETT J R. Mountain ecology: organism responses to environmental change, an introduction [J]. Global Ecology and Biogeography Letters, 1997: 3-6. 

[71] 方精云, 沈泽昊, 崔海亭. 试论山地的生态特征及山地生态学的研 究内容[J]. 生物多样性, 2004, 12: 10-19. 

[72] SATI V P. Towards sustainable livelihoods and ecosystems in mountain regions [M]. Cham, Germany: Springer International Publishing, 2014. 

[73] MESSERLI B, VIVIROLI D, WEINGARTNER R. Mountains of the world: vulnerable water towers for the 21st Century [J]. AMBIO: A Journal of the Human Environment, 2004, 33(SP13): 29-34. 

[74] RAHBEK C, BORREGAARD M K, ANTONELLI A, et al. Building mountain biodiversity: geological and evolutionary processes [J]. Science, 2019, 6458: 1114-1119. 

[75] 方精云. 探索中国山地植物多样性的分布规律[J]. 生物多样性, 2004, 12: 7-10. 

[76] 刘红, 袁兴中. 我国山地生物多样性初探[J]. 山地研究, 1996, 14: 3-8. 

[77] 国家统计局. 中国统计年鉴2019[M]. 北京: 中国统计出版社, 2019. 

[78] WU Y, ZHANG J, LIU S M, et al. Sources and distribution of carbon within the Yangtze River system [J]. Estuarine, Coastal and Shelf Science, 2007, 71: 13-25. 

[79] DONG X H, ANDERSON N J, YANG X D, et al. Carbon burial by shallow lakes on the Yangtze floodplain and its relevance to regional carbon sequestration [J]. Global Change Biology, 2012, 18: 2205- 2217. 

[80] BALIAN E V, SEGERS H, LÉVÈQUE C, et al. The freshwater animal diversity assessment: an overview of the results [J]. Hydrobiologia, 2008, 595: 627-637.

[81] 陈宜瑜, 吕宪国. 湿地功能与湿地科学的研究方向[J]. 湿地科学, 2003, 1: 7-11. 

[82] COLLEN B, WHITTON F, DYER E E, et al. Global patterns of freshwater species diversity, threat and endemism [J]. Global Ecology & Biogeography, 2013, 23: 40-51. 

[83] 王如松. 生态文明建设的控制论机理、认识误区与融贯路径[J]. 中国科学院院刊, 2013, 28: 173-181. 

[84] 杜祥琬, 温宗国, 王宁, 等. 生态文明建设的时代背景与重大意义 [J]. 中国工程科学, 2015, 17: 8-15. 

[85] 方精云, 朱江玲, 吉成均, 等. 从生态学观点看生态文明建设[J]. 中 国科学院院刊, 2013, 28: 182-188.

[86] 张智光. 人类文明与生态安全: 共生空间的演化理论[J]. 中国人 口·资源与环境, 2013, 23: 1-8. 

[87] ZEID M A. Environmental impacts of the Aswan High Dam: a case study [J]. International Journal of Water Resources Development, 1989, 5: 147-157. 

[88] ROBINSON S, STRZEPEK K, EL-SAID M, et al. The high dam at Aswan [M]//BHATIA R, CESTTI R, MALIK R P S, et al. Indirect impact of dams: case studies from India, Egypt, and Brazil. Washington DC, USA: World Bank Group, 2008: 227-273. 

[89] WHITE G F. The environmental effects of the high dam at Aswan [J]. Environment: Science and Policy for Sustainable Development, 1988, 30: 4-11, 34-40. 

[90] ABD-EL MONSEF H, SMITH S E, DARWISH K. Impacts of the Aswan High Dam after 50 years [J]. Water Resources Management, 2015, 29: 1873-1885. 

[91] KHALIFA H E, MOUSSA H A. Soil and agriculture after the Aswan high dam [M]//SATOH M, ABOULROOS S. Irrigated agriculture in Egypt. Cham, Germany: Springer International Publishing, 2017. 

[92] 曹文洪, 陈东. 阿斯旺大坝的泥沙效应及启示[J]. 泥沙研究, 1998, 4: 79-85. 

[93] DARWISH K, SMITH S E, TORAB M, et al. Geomorphological changes along the Nile Delta coastline between 1945 and 2015 detected using satellite remote sensing and GIS [J]. Journal of Coastal Research, 2017, 33: 786-794. 

[94] NIXON S W. Replacing the Nile: are anthropogenic nutrients providing the fertility once brought to the Mediterranean by a great river? [J]. AMBIO: A Journal of the Human Environment, 2003, 32(1): 30-39. 

[95] BISWAS A K, TORTAJADA C. Impacts of the High Aswan Dam [M]//TORTAJADA C, ALTINBILEK D, BISWAS A K. Impacts of large dams: a global assessment. Berlin: Springer-Verlag, 2011. 

[96] MALEK E A. Effect of the Aswan High Dam on prevalence of schistosomiasis in Egypt [J]. Tropical and Geographical Medicine, 1975, 27: 359-364. 

[97] ABDEL-WAHAB M F, EL-SAHLY A, ZAKARIA S, et al. Changing pattern of schistosomiasis in Egypt 1935-79 [J]. Lancet, 1979, 314: 242-244. 

[98] MILLIMAN J D. Blessed dams or damned dams? [J]. Nature, 1997, 386: 325-327. 

[99] O'CONNOR J E, DUDA J J, GRANT G E. 1000 dams down and counting [J]. Science, 2015, 6234: 496-497. 

[100] FOLEY M M, DUDA J J, BEIRNE M M, et al. Rapid water quality change in the Elwha River estuary complex during dam removal [J]. Limnology & Oceanography, 2015, 60: 1719-1732. 

[101] XU X Z, XU Y, CHEN S C, et al. Soil loss and conservation in the black soil region of Northeast China: a retrospective study [J]. Environmental Science & Policy, 2010, 13: 793-800. 

[102] 张新荣, 焦洁钰. 黑土形成与演化研究现状[J]. 吉林大学学报(地球科学版), 2020, 50: 553-568. 

[103] 汪景宽, 徐香茹, 裴久渤, 等. 东北黑土地区耕地质量现状与面临的机遇和挑战[J]. 土壤通报, 2021, 52: 695-701. 

[104] LIU X B, LEE B, CHARLES K, et al. Overview of Mollisols in the world: distribution, land use and management [J]. Canadian Journal of Soil Science, 2012, 92: 383-402. 

[105] COOK B I, MILLER R L, SEAGER R. Amplification of the North American “Dust Bowl” drought through human-induced land degradation [J]. Proceedings of the National Academy of Sciences, 2009, 106: 4997-5001. 

[106] ZACHAR D. Soil erosion [M]. New York, USA: Elsevier Scientific Publishing Company, 1982. 

[107] GOUDIE A S. Dust storms and their geomorphological implications [J]. Journal of Arid Environments, 1978, 1: 291-311.

[108] HESLIN A, PUMA M J, MARCHAND P, et al. Simulating the cascading effects of an extreme agricultural production shock: global implications of a contemporary US dust bowl event [J]. Frontiers in Sustainable Food Systems, 2020, 4: 26. 

[109] CORDOVA C, PORTER J C. The 1930s Dust Bowl: geoarchaeological lessons from a 20th century environmental crisis [J]. The Holocene, 2015, 25: 1707-1720. 

[110] 范昊明, 蔡强国, 陈光, 等. 世界三大黑土区水土流失与防治比较 分析[J]. 自然资源学报, 2005: 387-393. 

[111] BAUER A, BLACK A L. Soil carbon, nitrogen, and bulk density comparisons in two cropland tillage systems after 25 years and in virgin grassland [J]. Soil Science Society of America Journal, 1981, 45: 1166-1170. 

[112] ELLIOTT E T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils [J]. Soil Science Society of America Journal, 1986, 50: 627-633. 

[113] KARAVAYEVA N A, NEFEDOVA T G, TARGULIAN V O. Historical land use changes and soil degradation on the Russian plain [M]// BROUWER F M, THOMAS A J, CHADWICK M J. Land Use Changes in Europe. Dordrecht, Netherland: Springer Netherlands, 1991. 

[114] PIMENTEL D, BURGESS M. Soil erosion threatens food production [J]. Agriculture, 2013, 3: 443-463. 

[115]《中国水利年鉴》编辑委员会. 中国水利年鉴1999[M]. 北京: 中国 水利水电出版社, 1999.

[116] 李文华. 长江洪水与生态建设[J]. 自然资源学报, 1999, 14: 1-8. 

[117] 冯宗炜. 生态环境保护与防洪减灾[M]//国家林业局. ’98洪水聚 焦森林. 北京, 中国林业出版社, 1999: 198-201. 

[118] 唐守正. 我国森林资源与环境[M]//国家林业局. ’98洪水聚焦森 林. 北京, 中国林业出版社, 1999: 149-152. 

[119] 杨大三. 从’98 特大洪水透析长江流域生态环境[J]. 南京林业大学学报, 1999, 23: 47-50. 

[120] 庄国泰. 长江水灾与长江流域生态破坏的关系分析[J]. 环境保护, 1998, 26: 3-4. 

[121] 刘士余, 赵小敏. ’98特大洪水灾害后的反思[J]. 水土保持研究, 1999, 6: 3-5. 

[122] ZHANG J Q, XU K Q, YANG Y H, et al. Measuring water storage fluctuations in Lake Dongting, China, by Topex/Poseidon Satellite Altimetry [J]. Environmental Monitoring and Assessment, 2006, 115: 23-37. 

[123] ZHAO S Q, FANG J Y, MIAO S L, et al. The 7-decade degradation of a large freshwater lake in Central Yangtze River, China [J]. Environmental Science & Technology, 2005, 39: 431-436. 

[124] 史培军. 中国北方农牧交错地带的降水变化与“波动农牧业”[J]. 干旱区资源与环境, 1989, 3: 3-9. 

[125] 赵哈林, 赵学勇, 张铜会, 等. 北方农牧交错带的地理界定及其生态问题[J]. 地球科学进展, 2002, 17: 739-747. 

[126] 李世奎, 王石立. 中国北部半干旱地区农牧气候界线探讨[M]//中 国自然资源研究会, 中国地理学会, 中国农学会, 等. 中国干旱半 干旱地区自然资源研究. 北京: 科学出版社, 1988. 

[127] 杨恒山, 刘江, 梁怀宇. 西辽河平原气候及水资源变化特征[J]. 应用生态学报, 2009, 20: 84-90. 

[128] TAO S L, FANG J Y, ZHAO X, et al. Rapid loss of lakes on the Mongolian Plateau [J]. Proceedings of the National Academy of Sciences, 2015, 112: 2281-2286. 

[129] 朱教君, 郑晓. 关于三北防护林体系建设的思考与展望——基于 40年建设综合评估结果[J]. 生态学杂志, 2019, 38: 1600-1610.

 [130] YAN S H, DONG S C, LI Z H, et al. Carrying capacity of water resources for Three-North Shelterbelt Construction in China [J]. Journal of Resources and Ecology, 2013, 4: 50-55.

[131] 钱正英. 关于西北地区水资源配置、生态环境建设和可持续发展战略研究项目成果汇报(摘要)[N]. 人民日报, 2003-02-27. 

[132] 邵明安, 贾小旭, 王云强, 等. 黄土高原土壤干层研究进展与展望 [J]. 地球科学进展, 2016, 31: 14-22. 

[133] 鲁晨曦, 曹世雄, 石小亮. 我国北方干旱半干旱地区人工造林对地下水位变化影响的模拟研究[J]. 生态学报, 2017, 37: 715-725.

 [134] 李建东. 关于“三北防护林体系建设工程”的思考[J]. 草业科学, 2014, 31: 2195-2197. 

[135] 丁铭. 栽杨植柳难挡三北生态恶化[J]. 瞭望新闻周刊, 2006(32): 39-41. 

[136] 马世威, 马玉明, 姚洪林, 等. 沙漠学[M]. 呼和浩特: 内蒙古人民出版社, 1998. 

[137] 尹功明, 王旭龙, 韩非. 宁夏沙坡头沙漠扩张的时代: 来自黄河阶地光释光年龄证据[J]. 第四纪研究, 2013, 33: 269-275. 

[138] 周兴智. 沙漠地下水资源的估算[J]. 水文, 1984, 4: 29-32. 

[139] 朱睿, 王永军, 徐怀寿. 宁夏中卫沙坡头国家级自然保护区水资源调查及保护对策[J]. 宁夏农林科技, 2014, 55: 52-54. 

[140] 李得禄, 马全林, 张锦春, 等. 腾格里沙漠植被特征[J]. 中国沙漠, 2020, 40: 223-233.

[141] 赵景波, 郁科科, 邵天杰, 等. 腾格里沙漠沙层水分状况初步研究 [J]. 资源科学, 2011, 33: 259-264.

[142] 杨晓玉, 邵天杰, 赵景波. 腾格里沙漠沙坡头地区旱季沙层含水 量[J]. 水土保持通报, 2016, 36: 88-92.

[143] 陈荷生, 康跃虎, 冯今朝. 腾格里沙漠沙坡头地区植物生长与水 分平衡的初步研究[J]. 中国沙漠, 1991, 11: 1-10.

Outlines

/