Review Article

Arctic sea ice decline and its driving mechanisms

Expand
  • State Key Laboratory of Marine Geology, School of Ocean and Earth Science, Tongji University, Shanghai 200092, China

Received date: 2021-07-01

  Online published: 2022-02-21

Abstract

Polar sea ice plays an important role in global climate change. The Arctic is experiencing dramatic decline in sea ice coverage under global warming with a rate that is unprecedented over the past millennium. It is predicted that the Arctic Ocean will become ice-free during summertime in the middle of this century or even earlier. Arctic sea ice loss not only directly alters local environment and ecosystem, but also affects mid-latitude or even global weather and climate through large-scale oceanic and atmospheric circulation patterns. In this paper, we briefly review the characteristics of Arctic sea ice retreat and the associated physical mechanisms, and envisage prospect in the future work on mechanisms for Arctic sea ice retreat.

Cite this article

LIU Zhongfang . Arctic sea ice decline and its driving mechanisms[J]. Chinese Journal of Nature, 2022 , 44(1) : 39 -46 . DOI: 10.3969/j.issn.0253-9608.2022.01.004

References

[1] STROEVE J C, KATTSOV V, BARRETT A, et al. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations [J]. Geophysical Research Letters, 2012, 39: L16502. 

[2] OVERLAND J E, WANG M. When will the summer Arctic be nearly sea ice free? [J]. Geophysical Research Letters, 2013, 40(10): 2097-2101. 

[3] VOOSEN P. New feedbacks speed up the demise of Arctic sea ice [J]. Science, 2020, 369: 1043-1044. 

[4] LANDRUM L, HOLLAND M M. Extremes become routine in an emerging new Arctic [J]. Nature Climate Change, 2020, 10(12): 1108-1115. 

[5] VIHMA T. Effects of Arctic sea ice decline on weather and climate: a review [J]. Surveys in Geophysics, 2014, 35(5): 1175-1214. 

[6] SCREEN J A. Far-flung effects of Arctic warming [J]. Nature Geoscience, 2017, 10(4): 253-254. 

[7] SÉVELLEC F, FEDOROV A V, LIU W. Arctic sea-ice decline weakens the Atlantic meridional overturning circulation [J]. Nature Climate Change, 2017, 7(8): 604-610. 

[8] STRAWA A W, LATSHAW G, FARKAS S, et al. Arctic ice loss threatens national security: a path forward [J]. Orbis, 2020, 64(4): 622-636. 

[9] RAHMSTORF S, BOX J E, FEULNER G, et al. Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation [J]. Nature Climate Change, 2015, 5(5): 475-480. 

[10] KWOK R, UNTERSTEINER N. The thinning of Arctic sea ice [J]. Physics Today, 2011, 64(4): 36-41.

[11] JOHANNESSEN O M, BOBYLEV L P, SHALINA E V, et al. Sea ice in the Arctic: past, present and future [M]. Cham, Switzerland: Springer, 2019. 

[12] KINNARD C, ZDANOWICZ C M, FISHER D A, et al. Reconstructed changes in Arctic sea ice over the past 1450 years [J]. Nature, 2011, 479(7374): 509-512. 

[13] RAMSAYER K. 2020 Arctic sea ice minimum at second lowest on record [EB/OL]. NASA Global Climate Change Vital Signs of the Planet, 2020. [2021-07-01]. https://climate.nasa.gov/ news/3023/2020-arctic-sea-ice-minimum-at-second-lowest-onrecord.

[14] SERREZE M C, FRANCIS J A. The Arctic amplification debate [J]. Climatic Change, 2006, 76(3): 241-264. 

[15] NOTZ D, STROEVE J. Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission [J]. Science, 2016, 354(6313): 747-750. 

[16] CORNWALL W. Sea ice shrinks in step with carbon emissions [J]. Science, 2016, 354(6312): 533-534. 

[17] SWART N C, FYFE J C, HAWKINS E, et al. Influence of internal variability on Arctic sea-ice trends [J]. Nature Climate Change, 2015, 5(2): 86-89. 

[18] SWART N. Natural causes of Arctic sea-ice loss [J]. Nature Climate Change, 2017, 7(4): 239-241. 

[19] DING Q, SCHWEIGER A, L’HEUREUX M, et al. Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice [J]. Nature Climate Change, 2017, 7(4): 289-295. 

[20] DING Q, SCHWEIGER A, L’HEUREUX M, et al. Fingerprints of internal drivers of Arctic sea ice loss in observations and model simulations [J]. Nature Geoscience, 2019, 12(1): 28-33. 

[21] ZHANG S, GAN T Y, BUSH A B. Variability of Arctic sea ice based on quantile regression and the teleconnection with large-scale climate patterns [J]. Journal of Climate, 2020, 33(10): 4009-4025. 

[22] LIU Z, RISI C, CODRON F, et al. Acceleration of western Arctic sea ice loss linked to the Pacific North American pattern [J]. Nature Communications, 2021, 12(1): 1-9. 

[23] WETTSTEIN J J, DESER C. Internal variability in projections of twenty-first-century Arctic sea ice loss: role of the large-scale atmospheric circulation [J]. Journal of Climate, 2014, 27(2): 527- 550. 

[24] ZHANG X, SORTEBERG A, ZHANG J, et al. Recent radical shifts of atmospheric circulations and rapid changes in Arctic climate system [J]. Geophysical Research Letters, 2008, 35: L22701. 

[25] DESER C, TENG H. Evolution of Arctic sea ice concentration trends and the role of atmospheric circulation forcing, 1979–2007 [J]. Geophysical Research Letters, 2008, 35: L02504. 

[26] HU A, ROOTH C, BLECK R, et al. NAO influence on sea ice extent in the Eurasian coastal region [J]. Geophysical Research Letters, 2002, 29(22): 2053. 

[27] RIGOR I G, WALLACE J M, COLONY R L. Response of sea ice to the Arctic Oscillation [J]. Journal of Climate, 2002, 15(18): 2648- 2663. 

[28] STROEVE J, HOLLAND M M, MEIER W, et al. Arctic sea ice decline: faster than forecast [J]. Geophysical Research Letters, 2007, 34: L09501. 

[29] WU B, WANG J, WALSH J E. Dipole anomaly in the winter Arctic atmosphere and its association with sea ice motion [J]. Journal of Climate, 2006, 19(2): 210-225. 

[30] WANG J, ZHANG J, WATANABE E, et al. Is the dipole anomaly a major driver to record lows in Arctic summer sea ice extent? [J]. Geophysical Research Letters, 2009, 36 : L05706. 

[31] WERNLI H, PAPRITZ L. Role of polar anticyclones and midlatitude cyclones for Arctic summertime sea-ice melting [J]. Nature Geoscience, 2018, 11(2): 108-113. 

[32] WATANABE E, WANG J, SUMI A, et al. Arctic dipole anomaly and its contribution to sea ice export from the Arctic Ocean in the 20th century [J]. Geophysical Research Letters, 2006, 33: L23703. 

[33] RIGOR I G, WALLACE J M. Variations in the age of Arctic sea‐ice and summer sea‐ice extent [J]. Geophysical Research Letters, 2004, 31: L09401. 

[34] SHIMADA K, KAMOSHIDA T, ITOH M, et al. Pacific Ocean inflow: Influence on catastrophic reduction of sea ice cover in the Arctic Ocean [J]. Geophysical Research Letters, 2006, 33: L08605. 

[35] WOODGATE R A, AAGAARD K, WEINGARTNER T J. Interannual changes in the Bering Strait fluxes of volume, heat and freshwater between 1991 and 2004 [J]. Geophysical Research Letters, 2006, 33: L15609. 

[36] WOODGATE R A, WEINGARTNER T, LINDSAY R. The 2007 Bering Strait oceanic heat flux and anomalous Arctic sea‐ice retreat [J]. Geophysical Research Letters, 2010, 37: L01602. 

[37] DMITRENKO I A, RUDELS B, KIRILLOV S A, et al. Atlantic water flow into the Arctic Ocean through the St. Anna Trough in the Northern Kara Sea [J]. Journal of Geophysical Research, 2015, 120(7): 5158-5178. 

[38] SCHAUER U, FAHRBACH E, OSTERHUS S, et al. Arctic warming through the Fram Strait: Oceanic heat transport from 3 years of measurements [J]. Journal of Geophysical Research, 2004, 109: C06026. 

[39] SCHAUER U, LOENG H, RUDELS B, et al. Atlantic water flow through the Barents and Kara Seas [J]. Deep Sea Research Part I, 2002, 49(12): 2281-2298. 

[40] POLYAKOV I V, BESZCZYNSKA A, CARMACK E C, et al. One more step toward a warmer Arctic [J]. Geophysical Research  Letters, 2005, 32: L17605. 

[41] POLYAKOV I V, TIMOKHOV L A, ALEXEEV V A, et al. Arctic Ocean warming contributes to reduced polar ice cap [J]. Journal of Physical Oceanography, 2010, 40(12): 2743-2756. 

[42] LIND S, INGVALDSEN R, FUREVIK T. Arctic warming hotspot in the Northern Barents Sea linked to declining sea-ice import [J]. Nature Climate Change, 2018, 8(7): 634-639. 

[43] SPIELHAGEN R F, WERNER K, SORENSEN S A, et al. Enhanced modern heat transfer to the Arctic by warm Atlantic Water [J]. Science, 2011, 331(6016): 450-453. 

[44] POLYAKOV I V, PNYUSHKOV A V, ALKIRE M B, et al. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean [J]. Science, 2017, 356(6335): 285-291. 

[45] RIIHELÄ A, MANNINEN T, LAINE V. Observed changes in the albedo of the Arctic sea-ice zone for the period 1982–2009 [J]. Nature Climate Change, 2013, 3(10): 895-898. 

[46] PISTONE K, EISENMAN I, RAMANATHAN V. Observational determination of albedo decrease caused by vanishing Arctic sea ice [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(9): 3322-3326. 

[47] SCREEN J A, SIMMONDS I. The central role of diminishing sea ice in recent Arctic temperature amplification [J]. Nature, 2010, 464(7293): 1334-1337. 

[48] PEROVICH D K, LIGHT B, EICKEN H, et al. Increasing solar heating of the Arctic Ocean and adjacent seas, 1979–2005: Attribution and role in the ice‐albedo feedback [J]. Geophysical Research Letters, 2007, 34: L19505. 

[49] PHILIPP D, STENGEL M, AHRENS B. Analyzing the Arctic feedback mechanism between sea ice and low-level clouds using 34 years of satellite observations [J]. Journal of Climate, 2020, 33(17): 7479-7501. 

[50] KAPSCH M-L, GRAVERSEN R G, TJERNSTRÖM M. Springtime atmospheric energy transport and the control of Arctic summer seaice extent [J]. Nature Climate Change, 2013, 3(8): 744-748. 

[51] GOOSSE H, KAY J E, ARMOUR K C, et al. Quantifying climate feedbacks in polar regions [J]. Nature Communications, 2018, 9(1): 1-13. 

[52] BOISVERT L, STROEVE J C. The Arctic is becoming warmer and wetter as revealed by the Atmospheric Infrared Sounder [J]. Geophysical Research Letters, 2015, 42(11): 4439-4446. 

[53] CAO Y, LIANG S, CHEN X, et al. Enhanced wintertime greenhouse effect reinforcing Arctic amplification and initial sea-ice melting [J]. Scientific Reports, 2017, 7(1): 1-9. 

[54] PITHAN F, MAURITSEN T. Arctic amplification dominated by temperature feedbacks in contemporary climate models [J]. Nature Geoscience, 2014, 7(3): 181-184. 

[55] FELDL N, PO-CHEDLEY S, SINGH H K, et al. Sea ice and atmospheric circulation shape the high-latitude lapse rate feedback [J]. npj Climate Atmospheric Science, 2020, 3: 41. 

[56] BOEKE R C, TAYLOR P C, SEJAS S A. On the nature of the Arctic's positive lapse‐rate feedback [J]. Geophysical Research Letters, 2020, 48(1): e2020GL091109. 

[57] DELWORTH T L, ZENG F, VECCHI G A, et al. The North Atlantic Oscillation as a driver of rapid climate change in the Northern Hemisphere [J]. Nature Geoscience, 2016, 9(7): 509-512. 

[58] ZHANG R. Mechanisms for low-frequency variability of summer Arctic sea ice extent [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(15): 4570- 4575. 

[59] JACKSON L C, PETERSON K A, ROBERTS C D, et al. Recent slowing of Atlantic overturning circulation as a recovery from earlier strengthening [J]. Nature Geoscience, 2016, 9(7): 518-522. 

[60] MCCARTHY G, FRAJKA-WILLIAMS E, JOHNS W E, et al. Observed interannual variability of the Atlantic meridional overturning circulation at 26.5°N [J]. Geophysical Research Letters, 2012, 39: L19609. 

[61] MUELLER B L, GILLETT N, MONAHAN A, et al. Attribution of Arctic sea ice decline from 1953 to 2012 to influences from natural, greenhouse gas, and anthropogenic aerosol forcing [J]. Journal of Climate, 2018, 31(19): 7771-7787. 

[62] PARK S-W, KIM J-S, KUG J-S. The intensification of Arctic warming as a result of CO physiological forcing [J]. Nature Communications, 2020, 11(1): 1-7.

Outlines

/