Review Article

Activation and regulation mechanism of Piezo channels as mechanosensors

Expand
  • School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China

Online published: 2022-06-20

Abstract

Piezo channels are mechanosensitive ion channels discovered in mammals. They are involved in important physiological processes including touch sensation and osmotic regulation, and are correlated to many diseases such as sensory disorders, cardiovascular diseases, and tumors. The process of converting mechanical signals into electrical signals by Piezo activation could be described by the membrane dome mechanism. In the absence of tension, Piezo channel with its surrounding membrane is highly curved into a dome shape, which is flattened and open in response to tension, as this conformation is more energetically favored. This process could be regulated by properties of Piezo protein itself, lipids, interacting proteins and other factors, to fulfil the complex physiological functions of Piezo. A better understanding of the activation and regulation mechanism of Piezo will shed lights on new treatments of related diseases from the perspective of mechanotransduction.

Cite this article

GUO Yusong R . Activation and regulation mechanism of Piezo channels as mechanosensors[J]. Chinese Journal of Nature, 2022 , 44(3) : 182 -194 . DOI: 10.3969/j.issn.0253-9608.2022.03.002

References

[1] JIN P, JAN L Y, JAN Y N. Mechanosensitive ion channels: structural features relevant to mechanotransduction mechanisms [J]. Annu Rev Neurosci, 2020, 43: 207-229.
[2] COSTE B, MATHUR J, SCHMIDT M, et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels [J]. Science, 2010, 330(6000): 55-60.
[3] GE J, LI W, ZHAO Q, et al. Architecture of the mammalian mechanosensitive Piezo1 channel [J]. Nature, 2015, 527(7576): 64-69.
[4] GUO Y R, MACKINNON R. Structure-based membrane dome mechanism for Piezo mechanosensitivity [J]. eLife, 2017, 6:
e33660.
[5] SAOTOME K, MURTHY S E, KEFAUVER J M, et al. Structure of the mechanically activated ion channel Piezo1 [J]. Nature, 2018, 554(7693): 481-486.
[6] ZHAO Q, ZHOU H, CHI S, et al. Structure and mechanogating mechanism of the Piezo1 channel [J]. Nature, 2018, 554(7693): 487-492.
[7] GOTTLIEB P A, SACHS F. Piezo1: properties of a cation selective mechanical channel [J]. Channels, 2012, 6(4): 214-219.
[8] WU J, LEWIS A H, GRANDL J. Touch, tension, and transduction–the function and regulation of Piezo ion channels [J]. Trends in Biochemical Sciences, 2017, 42(1): 57-71.
[9] FOTIOU E, MARTIN-ALMEDINA S, SIMPSON M A, et al. Novel mutations in PIEZO1 cause an autosomal recessive
generalized lymphatic dysplasia with non-immune hydrops fetalis [J]. Nature Communications, 2015, 6: 8085.
[10] NONOMURA K, LUKACS V, SWEET D T, et al. Mechanically activated ion channel PIEZO1 is required for lymphatic valve
formation [J]. Proc Natl Acad Sci USA, 2018, 115(50): 12817-12822.
[11] KANG H, HONG Z, ZHONG M, et al. Piezo1 mediates angiogenesis through activation of MT1-MMP signaling [J]. Am J
Physiol Cell Physiol, 2019, 316(1): C92-C103.
[12] ANDOLFO I, ALPER S L, DE FRANCESCHI L, et al. Multiple clinical forms of dehydrated hereditary stomatocytosis arise from mutations in PIEZO1 [J]. Blood, 2013, 121(19): 3925-3935.
[13] CAHALAN S M, LUKACS V, RANADE S S, et al. Piezo1 links mechanical forces to red blood cell volume [J]. eLife, 2015, 4: e07370.
[14] MA S, CAHALAN S, LAMONTE G, et al. Common PIEZO1 allele in African populations causes RBC dehydration and
attenuates plasmodium infection [J]. Cell, 2018, 173(2): 443-455.
[15] KOSER D E, THOMPSON A J, FOSTER S K, et al. Mechanosensing is critical for axon growth in the developing brain
[J]. Nature Neuroscience, 2016, 19(12): 1592-1598.
[16] PATHAK M M, NOURSE J L, TRAN T, et al. Stretch-activated ion channel Piezo1 directs lineage choice in human neural stem cells [J]. Proceedings of the National Academy of Sciences, 2014, 111( 5): 16148-16153.
[17] FRIEDRICH E E, HONG Z, XIONG S, et al. Endothelial cell Piezo1 mediates pressure-induced eung vascular hyperpermeability via disruption of adherens junctions [J]. Proc Natl Acad Sci USA, 2019, 116(26): 12980-12985.

[18] PEYRONNET R, MARTINS J R, DUPRAT F, et al. Piezo1-dependent stretch-activated channels are inhibited by polycystin-2 in renal tubular epithelial cells [J]. EMBO Reports, 2013, 14(12): 1143-1148.

[19] DALGHI M G, CLAYTON D R, RUIZ W G, et al. Expression and distribution of PIEZO1 in the mouse urinary tract [J]. Am J Physiol Renal Physiol, 2019, 317(2): F303-F321.
[20] MARTINS J R, PENTON D, PEYRONNET R, et al. Piezo1-dependent regulation of urinary osmolarity [J]. Pflügers Archiv-
European Journal of Physiology, 2016, 468(7): 1197-1206.
[21] WANG L, ZHOU H, ZHANG M, et al. Structure and mechanogating of the mammalian tactile channel PIEZO2 [J].
Nature, 2019, 573(7773): 225-229.
[22] WU J, YOUNG M, LEWIS A H, et al. Inactivation of mechanically activated Piezo1 ion channels is determined by the C-terminal extracellular domain and the inner pore helix [J]. Cell Reports, 2017, 21(9): 2357-2366.
[23] SYEDA R, XU J, DUBIN A E, et al. Chemical activation of the mechanotransduction channel Piezo1 [J]. eLife, 2015, 4: e07369.
[24] RANADE S S, WOO S H, DUBIN A E, et al. Piezo2 is the major transducer of mechanical forces for touch sensation in mice [J]. Nature, 2014, 516(7529): 121-125.
[25] MAKSIMOVIC S, NAKATANI M, BABA Y, et al. Epidermal merkel cells are mechanosensory cells that tune mammalian touch receptors [J]. Nature, 2014, 509(7502): 617-621.
[26] WOO S H, RANADE S, WEYER A D, et al. Piezo2 is required for merkel-cell mechanotransduction [J]. Nature, 2014, 509(7502): 622-626.
[27] WOO S H, LUKACS V, DE NOOIJ J C, et al. Piezo2 is the principal mechanotransduction channel for proprioception [J].
Nature Neuroscience, 2015, 18(12): 1756-1762.
[28] MAHMUD A A, NAHID N A, NASSIF C, et al. Loss of the proprioception and touch sensation channel PIEZO2 in siblings
with a progressive form of contractures [J]. Clin Genet, 2017, 91(3): 470-475.
[29] MURTHY S E, LOUD M C, DAOU I, et al. The mechanosensitive ion channel Piezo2 mediates sensitivity to mechanical pain in mice [J]. Sci Transl Med, 2018, 10(462): eaat9897.
[30] SZCZOT M, LILJENCRANTZ J, GHITANI N, et al. PIEZO2 mediates injury-induced tactile pain in mice and humans [J]. Sci Transl Med, 2018, 10(462): eaat9892.
[31] MIKHAILOV N, LESKINEN J, FAGERLUND I, et al. Mechanosensitive meningeal nociception via Piezo channels: implications for pulsatile pain in migraine? [J]. Neuropharmacology, 2019, 149: 113-123.
[32] ZENG W Z, MARSHALL K L, MIN S, et al. PIEZOs mediate neuronal sensing of blood pressure and the baroreceptor reflex [J]. Science, 2018, 362(6413): 464-467.
[33] LEE W, LEDDY H A, CHEN Y, et al. Synergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage [J]. Proceedings of the National Academy of Sciences, 2014, 111(47): E5114-E5122.
[34] OKUBO M, FUJITA A, SAITO Y, et al. A family of distal arthrogryposis type 5 due to a novel PIEZO2 mutation [J].
American Journal of Medical Genetics Part A, 2015, 167(5): 1100-1106.
[35] COSTE B, HOUGE G, MURRAY M F, et al. Gain-of-function mutations in the mechanically activated ion channel PIEZO2 cause a subtype of distal arthrogryposis [J]. Proceedings of the National Academy of Sciences, 2013, 110(12): 4667-4672.
[36] WANG F, KNUTSON K, ALCAINO C, et al. Mechanosensitive ion channel Piezo2 is important for enterochromaffin cell response to mechanical forces: Piezo2 in EC cells [J]. The Journal of Physiology, 2017, 595(1): 79-91.
[37] MAZZUOLI-WEBER G, KUGLER E M, BÜHLER C I, et al. Piezo proteins: incidence and abundance in the enteric nervous
system. Is there a link with mechanosensitivity? [J]. Cell Tissue Res, 2019, 375(3): 605-618.
[38] ALBUISSON J, MURTHY S E, BANDELL M, et al. Dehydrated hereditary stomatocytosis linked to gain-of-function mutations in mechanically activated PIEZO1 ion channels [J]. Nature Communications, 2013, 4. DOI: 10.1038/ncomms2899.
[39] MCMILLIN M J, BECK A E, CHONG J X, et al. Mutations in PIEZO2 cause gordon syndrome, marden-walker syndrome, and distal arthrogryposis Type 5 [J]. Am J Hum Genet, 2014, 94(5): 734-744.
[40] RETAILLEAU K, DUPRAT F, ARHATTE M, et al. Piezo1 in smooth muscle cells is involved in hypertension-dependent arterial remodeling [J]. Cell Reports, 2015, 13(6): 1161-1171.
[41] DELLA PIETRA A, MIKHAILOV N, GINIATULLIN R. The emerging role of mechanosensitive Piezo channels in migraine pain[J]. Int J Mol Sci, 2020, 21(3): E696.
[42] SUN Y, LI M, LIU G, et al. The function of Piezo1 in colon cancer metastasis and its potential regulatory mechanism [J]. J Cancer Res Clin Oncol, 2020, 146(5): 1139-1152.
[43] HAN Y, LIU C, ZHANG D, et al. Mechanosensitive ion channel Piezo1 promotes prostate cancer development through the activation of the akt/MTOR pathway and acceleration of cell cycle [J]. Int J Oncol, 2019, 55(3): 629-644.
[44] AYKUT B, CHEN R, KIM J I, et al. Targeting Piezo1 unleashes innate immunity against cancer and infectious disease [J]. Sci Immunol, 2020, 5(50): eabb5168.
[45] YANG H, LIU C, ZHOU R M, et al. Piezo2 protein: a novel regulator of tumor angiogenesis and hyperpermeability [J].
Oncotarget, 2016, 7(28): 44630.
[46] SUKHAREV S I, BLOUNT P, MARTINAC B, et al. Mechanosensitive channels of escherichia coli: The MscL gene,
protein, and activities [J]. Annual Review of Physiology, 1997, 59(1): 633-657.
[47] ISCLA I, BLOUNT P. Sensing and responding to membrane tension: the bacterial MscL channel as a model system [J].
Biophysical Journal, 2012, 103(2): 169-174.
[48] PEROZO E, CORTES D M, SOMPORNPISUT P, et al. Open channel structure of MscL and the gating mechanism of
mechanosensitive channels [J]. Nature, 2002, 418(6901): 942-948.
[49] CHANG G, SPENCER R H, LEE A T, et al. Structure of the MscL homolog from mycobacterium tuberculosis: a gated
mechanosensitive ion channel [J]. Science, 1998, 282(5397): 2220-2226.
[50] SUKHAREV S, DURELL S R, GUY H R. Structural models of the MscL gating mechanism [J]. Biophysical Journal, 2001, 81(2): 917-936.
[51] CORRY B, HURST A C, PAL P, et al. An improved open-channel structure of MscL determined from FRET confocal microscopy and simulation [J]. The Journal of General Physiology, 2010, 136(4): 483-494.
[52] WIGGINS P, PHILLIPS R. Membrane-protein interactions in mechanosensitive channels [J]. Biophysical Journal, 2005, 88(2): 880-902.
[53] HASWELL E S, PHILLIPS R, REES D C. Mechanosensitive channels: What can they do and how do they do it? [J]. Structure, 2011, 19(10): 1356-1369.
[54] MARTINAC B, ADLER J, KUNG C. Mechanosensitive ion channels of E. coli activated by amphipaths [J]. Nature, 1990,
348(6298): 261-263.
[55] BROHAWN S G, SU Z, MACKINNON R. Mechanosensitivity is mediated directly by the lipid membrane in TRAAK and TREK1 K+ channels [J]. Proceedings of the National Academy of Sciences, 2014, 111(9): 3614-3619.
[56] BROHAWN S G, CAMPBELL E B, MACKINNON R. Physical mechanism for gating and mechanosensitivity of the human
TRAAK K + channel [J]. Nature, 2014, 516(7529): 126-130.
[57] JIAO R, CUI D, WANG S C, et al. Interactions of the mechanosensitive channels with extracellular matrix, integrins, and
cytoskeletal network in osmosensation [J]. Front Mol Neurosci, 2017, 10: 96.
[58] HOLT J R, TOBIN M, ELFERICH J, et al. Putting the pieces together: the hair cell transduction complex [J]. J Assoc Res
Otolaryngol, 2021, 22(6): 601-608.
[59] JIN P, BULKLEY D, GUO Y, et al. Electron cryo-microscopy structure of the mechanotransduction channel NOMPC [J]. Nature, 2017, 547(7661): 118-122.
[60] SUN L, GAO Y, HE J, et al. Ultrastructural organization of NompC in the mechanoreceptive organelle of drosophila campaniform mechanoreceptors [J]. Proc Natl Acad Sci USA, 2019, 116(15): 7343-7352.
[61] DOYLE D A, MORAIS CABRAL J, PFUETZNER R A, et al. The structure of the potassium channel: Molecular basis of K +
conduction and selectivity [J]. Science, 1998, 280(5360): 69-77.
[62] SYEDA R, FLORENDO M N, COX C D, et al. Piezo1 channels are inherently echanosensitive [J]. Cell Reports, 2016, 17(7): 1739-1746.
[63] POOLE K, HERGET R, LAPATSINA L, et al. Tuning Piezo ion channels to detect molecular-scale movements relevant for fine touch [J]. Nature Communications, 2014, 5: 3520.
[64] WU J, GOYAL R, GRANDL J. Localized force application reveals mechanically sensitive domains of Piezo1 [J]. Nature
Communications, 2016, 7: 12939.
[65] GAO Q, COOPER P R, WALMSLEY A D, et al. Role of Piezo channels in ultrasound-stimulated dental stem cells [J]. Journal of Endodontics, 2017, 43(7): 1130-1136.
[66] PRIETO M L, FIROUZI K, KHURI-YAKUB B T, et al. Activation of Piezo1 but not NaV1.2 channels by ultrasound at 43 MHz [J]. Ultrasound Med Biol, 2018, 44(6): 1217-1232.
[67] GAUB B M, MÜLLER D J. Mechanical stimulation of Piezo1 receptors depends on extracellular matrix proteins and directionality of force [J]. Nano Letters, 2017, 17(3): 2064-2072.
[68] LIN Y C, GUO Y R, MIYAGI A, et al. Force-induced conformational changes in PIEZO1 [J]. Nature, 2019, 573(7773):
230-234.
[69] WANG Y, CHI S, GUO H, et al. A lever-like transduction pathway for long-distance chemical- and mechano-gating of the
mechanosensitive Piezo1 channel [J]. Nature Communications, 2018, 9(1): 1300.
[70] LACROIX J J, BOTELLO-SMITH W M, LUO Y. Probing the gating mechanism of the mechanosensitive channel Piezo1 with the small molecule Yoda1 [J]. Nature Communications, 2018, 9(1): 2029.
[71] ROTORDAM M G, FERMO E, BECKER N, et al. A yoda1-based approach to investigate Piezo1 channels in red blood cells using automated patch clamp technology [J]. Blood, 2018, 132: 1031.
[72] LIN Y, BUYAN A, CORRY B. Computational studies of Piezo1 yield insights into key lipid–protein interactions, channel activation, and agonist binding [J]. Biophys Rev, 2022, 14: 209-219. 

[73] SUKHAREV S I, MARTINAC B, ARSHAVSKY V Y, et al. Two types of mechanosensitive channels in the escherichia coli cell envelope: solubilization and functional reconstitution [J]. Biophysical Journal, 1993, 65(1): 177-183.
[74] LEWIS A H, GRANDL J. Inactivation kinetics and mechanical gating of Piezo1 ion channels depend on subdomains within the cap [J]. Cell Reports, 2020, 30(3): 870-880.
[75] JIANG W, DEL ROSARIO J S, BOTELLO-SMITH W, et al. Crowding-induced opening of the mechanosensitive Piezo1 channel in silico [J]. Communications Biology, 2021, 4(1): 1-14.
[76] VECCHIS D D, BEECH D J, KALLI A C. Molecular dynamics simulations of Piezo1 channel opening by increases in membrane tension [J]. Biophysical Journal, 2021, 120(8): 1510-1521.
[77] YANG X, LIN C, CHEN X, et al. Structure deformation and curvature sensing of PIEZO1 in lipid membranes [J]. Nature, 2022, 604(7905): 377-383.
[78] HASELWANDTER C A, MACKINNON R. Piezo’s membrane footprint and its contribution to mechanosensitivity [J]. eLife, 2018, 7: e41968.
[79] GENG J, LIU W, ZHOU H, et al. A plug-and-latch mechanism for gating the mechanosensitive Piezo channel [J]. Neuron, 2020, 106(3): 438-451.
[80] ZHAO Q, WU K, GENG J, et al. on Permeation and mechanotransduction mechanisms of mechanosensitive Piezo channels [J]. Neuron, 2016, 89(6): 1248-1263.
[81] BROHAWN S G, WANG W, HANDLER A, et al. The mechanosensitive ion channel TRAAK is localized to the
mammalian node of ranvier [J]. eLife, 2019, 8: e50403.
[82] JIA Y, ZHAO Y, KUSAKIZAKO T, et al. TMC1 and TMC2 proteins are pore-forming subunits of mechanosensitive ion
channels [J]. Neuron, 2020, 105(2): 310-321.
[83] YUE X, SHENG Y, KANG L, et al. Distinct functions of TMC channels: a comparative overview [J]. Cell Mol Life Sci, 2019,
76(21): 4221-4232.
[84] WALKER R G, WILLINGHAM A T, ZUKER C S. A Drosophila mechanosensory transduction channel [J]. Science, 2000,
287(5461): 2229-2234.
[85] YAN Z, ZHANG W, HE Y, et al. Drosophila NOMPC is a mechanotransduction channel subunit for gentle-touch sensation
[J]. Nature, 2013, 493(7431): 221-225.
[86] KANG L, GAO J, SCHAFER W R, et al. Elegans TRP family protein TRP-4 is a pore-forming subunit of a native
mechanotransduction channel [J]. Neuron, 2010, 67(3): 381-391.
[87] MURTHY S E, DUBIN A E, WHITWAM T, et al. OSCA/TMEM63 are an evolutionarily conserved family of mechanically activated ion channels [J]. eLife, 2018, 7: e41844.
[88] BEAULIEU-LAROCHE L, CHRISTIN M, DONOGHUE A, et al. TACAN is an ion channel involved in sensing mechanical pain [J]. Cell, 2020, 180(5): 956-967.
[89] CHEN X, WANG Y, LI Y, et al. Cryo-EM structure of the human TACAN in a closed state [J]. Cell Reports, 2022, 38(9): 110445.
[90] NIU Y, TAO X, VAISEY G, et al. Analysis of the mechanosensor channel functionality of TACAN [J]. eLife, 2021, 10: e71188.
[91] RONG Y, JIANG J, GAO Y, et al. TMEM120A contains a specific coenzyme A-binding site and might not mediate poking- or stretch-induced channel activities in cells [J]. eLife, 2021, 10: e71474.
[92] XUE J, HAN Y, BANIASADI H, et al. TMEM120A is a coenzyme A-binding membrane protein with structural similarities to ELOVL fatty acid elongase [J]. eLife, 2021, 10: e71220.
[93] FANG X Z, ZHOU T, XU J Q, et al. Structure, kinetic properties and biological function of mechanosensitive Piezo channels [J]. Cell & Bioscience, 2021, 11(1): 13.
[94] DEL MÁRMOL J I, TOUHARA K K, CROFT G, et al. Piezo1 forms a slowly-inactivating mechanosensory channel in mouse
embryonic stem cells [J]. eLife, 2018, 7: e33149.
[95] QI Y, ANDOLFI L, FRATTINI F, et al. Membrane stiffening by STOML3 facilitates mechanosensation in sensory neurons [J]. Nature Communications, 2015, 6: 8512.
[96] ZHANG T, CHI S, JIANG F, et al. A protein interaction mechanism for suppressing the mechanosensitive Piezo channels [J]. Nature Communications, 2017, 8(1): 1797.
[97] ALPER S L. Genetic diseases of PIEZO1 and PIEZO2 dysfunction [J]. In Current Topics in Membranes, 2017, 79: 97-134.
[98] SZCZOT M, POGORZALA L A, SOLINSKI H J, et al. Cell-type-specific splicing of Piezo2 regulates mechanotransduction [J]. Cell Reports, 2017, 21 (10): 2760-2771.
[99] VERKEST C, SCHAEFER I, NEES T A, et al. Intrinsically disordered intracellular domains control key features of
the mechanically-gated ion channel PIEZO2 [J]. Nature Communications, 2022, 13 (1): 1365.
[100] RIDONE P, PANDZIC E, VASSALLI M, et al. Disruption of membrane cholesterol organization impairs the activity of PIEZO1 channel clusters [J]. Journal of General Physiology, 2020, 152: e201912515.
[101] LEWIS A H, GRANDL J. Piezo1 ion channels inherently function as independent mechanotransducers [J]. eLife, 2021, 10: e70988.
[102] ISCLA I, WRAY R, EATON C, et al. Scanning MscL channels with targeted post-translational modifications for functional alterations [J]. PLoS One, 2015, 10(9): e0137994.
[103] SHIPSTON M J. Ion channel regulation by protein S-acylation [J]. Journal of General Physiology, 2014, 143(6): 659-678.
[104] LI J V, NG C A, CHENG D, et al. Modified N-linked glycosylation status predicts trafficking defective human Piezo1 channel mutations [J]. Commun Biol, 2021, 4(1): 1-17.
[105] COSTE B, XIAO B, SANTOS J S, et al. Piezo proteins are pore-forming subunits of mechanically activated channels [J]. Nature,2012, 483(7388): 176-181.
[106] ROMERO L O, MASSEY A E, MATA-DABOIN A D, et al. Dietary fatty acids fine-tune Piezo1 mechanical response [J].
Nature Communications, 2019, 10 (1): 1200.
[107] BORBIRO I, BADHEKA D, ROHACS T. Activation of TRPV1 channels inhibits mechanosensitive Piezo channel activity by
depleting membrane phosphoinositides [J]. Science Signaling, 2015, 8(363): ra15.
[108] NARAYANAN P, HÜTTE M, KUDRYASHEVA G, et al. Myotubularin related protein-2 and its phospholipid substrate
PIP2 control Piezo2-mediated mechanotransduction in peripheral sensory neurons [J]. eLife, 2018, 7: e32346.
[109] SHI J, HYMAN A J, DE VECCHIS D, et al. Sphingomyelinase disables inactivation in endogenous PIEZO1 channels [J]. Cell Reports, 2020, 33(1): 108225.
[110] GNANASAMBANDAM R, GHATAK C, YASMANN A, et al. GsMTx4: mechanism of inhibiting mechanosensitive ion channels [J]. Biophysical Journal, 2017, 112(1): 31-45.
[111] MANESHI M M, ZIEGLER L, SACHS F, et al. Enantiomeric Aβ peptides inhibit the fluid shear stress response of PIEZO1 [J]. Scientific Reports, 2018, 8 (1): 14267.
[112] CHONG J, DE VECCHIS D, HYMAN A J, et al. Modeling of full-length Piezo1 suggests importance of the proximal N-terminus fordome structure [J]. Biophysical Journal, 2021, 120(8): 1343-1356.
[113] BUYAN A, COX C D, BARNOUD J, et al. Piezo1 forms specific, functionally important interactions with phosphoinositides and cholesterol [J]. Biophysical Journal, 2020, 119(8): 1683-1697.
[114] NARAYANAN P, SONDERMANN J, ROUWETTE T, et al. Native Piezo2 interactomics identifies pericentrin as a novel
regulator of Piezo2 in somatosensory neurons [J]. Journal of Proteome Research, 2016, 15(8): 2676-2687.
[115] GOTTLIEB P A, BAE C, SACHS F. Gating the mechanical channel Piezo1: a comparison between whole-cell and patch
recording [J]. Channels, 2012, 6(4): 282-289.
[116] COX C D, BAE C, ZIEGLER L, et al. Removal of the mechanoprotective influence of the cytoskeleton reveals PIEZO1
is gated by bilayer tension [J]. Nature Communications, 2016, 7: 10366.
[117] ELLEFSEN K L, HOLT J R, CHANG A C, et al. Myosin-II mediated traction forces evoke localized Piezo1-dependent Ca 2+ flickers [J]. Commun Biol, 2019, 2(1): 1-13.
[118] WANG J, JIANG J, YANG X, et al. Tethering Piezo channels to the actin cytoskeleton for mechanogating via the E-cadherin-β-catenin mechanotransduction complex [J]. Cell Reports, 2020, 38(6). DOI: 10.1101/2020.05.12.092148.
[119] DEL ROSARIO J S, YUDIN Y, SU S, et al. Gi-coupled receptor activation potentiates Piezo2 currents via Gβγ [J]. EMBO Rep, 2020, 21(5): e49124.
[120] EVANS E L, CUTHBERTSON K, ENDESH N, et al. Yoda1 analogue (Dooku1) which antagonizes yoda1-evoked activation of
Piezo1 and aortic relaxation [J]. Br J Pharmacol, 2018, 175(10):
1744-1759.
[121] LIU S, PAN X, CHENG W, et al. Tubeimoside I antagonizes
Yoda1-evoked Piezo1 channel activation [J]. Frontiers in
Pharmacology, 2020, 11: 768.
[122] BOTELLO-SMITH W M, JIANG W, ZHANG H, et al. A
mechanism for the activation of the mechanosensitive Piezo1
channel by the small molecule Yoda1 [J]. Nature Communications,
2019, 10(1): 4503.
[123] LI H, WEI W, XU H. Drug discovery is an eternal challenge for
the biomedical sciences [J]. Acta Materia Medica, 2022. DOI:
10.15212/AMM-2022-1001.
[124] ZHANG M, WANG D, KANG Y, et al. Structure of the
mechanosensitive OSCA channels [J]. Nat Struct Mol Biol, 2018,
25(9): 850-858.
[125] GE J, ELFERICH J, GOEHRING A, et al. Structure of mouse
protocadherin 15 of the stereocilia tip link in complex with LHFPL5 [J]. eLife, 2018, 7: e38770.
[126] NORENG S, BHARADWAJ A, POSERT R, et al. Structure of the human epithelial sodium channel by cryo-electron microscopy [J]. eLife, 2018, 7: e39340.
[127] MAITY K, HEUMANN J M, MCGRATH A P, et al. Cryo-EM structure of OSCA1.2 from oryza sativa elucidates the mechanical basis of potential membrane hyperosmolality gating [J]. Proceedings of the National Academy of Sciences, 2019, 116(28): 14309-14318.
[128] ZHANG Y, DADAY C, GU R X, et al. Visualization of the mechanosensitive ion channel MscS under membrane tension [J]. Nature, 2021, 590(7846): 509-514.
[129] BAE C, SACHS F, GOTTLIEB P A. Protonation of the human PIEZO1 ion channel stabilizes inactivation [J]. Journal of
Biological Chemistry, 2015, 290(8): 5167-5173.
[130] BAE C, GOTTLIEB P A, SACHS F. Human PIEZO1: removing inactivation [J]. Biophysical Journal, 2013, 105(4): 880-886.
[131] ZHENG W, GRACHEVA E O, BAGRIANTSEV S N. A hydrophobic gate in the inner pore helix is the major determinant
of inactivation in mechanosensitive Piezo channels [J]. eLife, 2019, 8: e44003.
[132] EVANS E L, POVSTYAN O V, DE VECCHIS D, et al. RBCs prevent rapid PIEZO1 inactivation and expose slow deactivation as a mechanism of dehydrated hereditary stomatocytosis [J]. Blood, 2020, 136(1): 140-144.
[133] HENDRICKX G, FISCHER V, LIEDERT A, et al. Piezo1 inactivation in chondrocytes impairs trabecular bone formation [J]. Journal of Bone and Mineral Research, 2021, 36(2): 369-384.
[134] DEMOLOMBE S, DUPRAT F, HONORÉ E, et al. Slower Piezo1 inactivation in dehydrated hereditary stomatocytosis (xerocytosis) [J]. Biophysical Journal, 2013, 105(4): 833-834.

Outlines

/