Review Article

Advances in single-molecule investigation on DNA damage repair

Expand
  • ①Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China; ② School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan Province, China

Received date: 2022-04-14

  Online published: 2022-07-18

Abstract

Exogenous or endogenous DNA damages occur continuously in all domains of organisms. Defects in DNA damage repair are closely related to many serious diseases even cancers. Along with evolution, biological cells have developed a series of sophisticated repair pathways to remove or tolerate these damages. Different from conventional biochemical and molecular biology methods, cutting-edge single-molecule technologies are employed to investigate the dynamic functionality of DNA repairrelated biomolecules in vitro and in living cells, which is beneficial to understand more adequately the mechanisms of DNA repair pathways. This review focuses on the common types of DNA damage and repair pathways, and describes single-molecule manipulation techniques such as atomic force microscopy, magnetic tweezers, optical tweezers, and single-molecule fluorescence imaging technologies such as total internal reflection fluorescence microscopy, photoactivation localization microscopy, and superresolution tracking microscopy. The researches of DNA repair mechanism in recent years have been presented as well. The longstanding problems about DNA repair studied via single-molecule technology are sorted out. In the end, we prospected single-molecule technology and other interdisciplinary technologies in the investigation of DNA repair mechanism.

Cite this article

JIANG Ting, ZHAI Fanfan, ZHONG Shanshan, FAN Jun . Advances in single-molecule investigation on DNA damage repair[J]. Chinese Journal of Nature, 2023 , 45(1) : 22 -32 . DOI: 10.3969/j.issn.0253-9608.2022.03.009

References

[1] HUGHES C D, SIMONS M, MACKENZIE C E, et al. Single molecule techniques in DNA repair: a primer [J]. DNA Repair, 2014, 20(8): 2-13.
[2] DULIN D, BERGHUIS B A, DEPKEN M, et al. Untangling reaction pathways through modern approaches to high-throughput
single-molecule force-spectroscopy experiments [J]. Current Opinion in Structural Biology, 2015, 34: 116-122.
[3] GREENE E C, WIND S, FAZIO T, et al. DNA curtains for highthroughput single-molecule optical imaging [J]. Methods in
Enzymology, 2010, 472: 293-315.
[4] FAN J, LEROUX-COYAU M, SAVERY N J, et al. Reconstruction of bacterial transcription-coupled repair at single-molecule
resolution [J]. Nature, 2016, 536(7615): 234-237.
[5] LEE K S, BALCI H, JIA H, et al. Direct imaging of single UvrD helicase dynamics on long single-stranded DNA [J]. Nature
Communications, 2013, 4: 1878.
[6] GAHLMANN A, MOERNER W E. Exploring bacterial cell biology with single-molecule tracking and super-resolution imaging
[J]. Nature Review Microbiology, 2014, 12(1): 9-22.

[7] HUANG B, BATES M, ZHUANG X. Super-resolution fluorescence microscopy [J]. Annual Review of Biochemistry, 2009, 78(1): 993-1016.

[8] HSU P D, LANDER E S, ZHANG F. Development and applications of CRISPR-Cas9 for genome engineering [J]. Cell, 2014, 157(6): 1262-1278.
[9] GAUTIER A, JUILLERAT A, HEINIS C, et al. An engineered protein tag for multiprotein labeling in living cells [J]. Chemistry &
Biology London, 2008, 15(2): 128-136.
[10] GRIMM J B, ENGLISH B P, CHEN J, et al. A general method to improve fluorophores for live-cell and single-molecule microscopy [J]. Nature Methods, 2015, 12(3): 244-250.
[11] TAHERI-ARAGHI S, BROWN S D, SAULS J T, et al. Single-cell physiology [J]. Annual Review of Biophysics, 2015, 44(1): 123-
142.
[12] NEUMAN K C, BLOCK S M. Optical trapping [J]. Review of Scientific Instruments, 2004, 75(9): 2787-2809.
[13] SELVIN P R, HA T. Single-molecule techniques: a laboratory manual [M]. New York: Cold Spring Harbor Laboratory Press,
2008.
[14] LINDAHL T. Instability and decay of the primary structure of DNA [J]. Nature, 1993, 362(6422): 709-715.
[15] KUZMINOV A. Single-strand interruptions in replicating chromosomes cause double-strand breaks [J]. Proceedings of the
National Academy of Sciences of the United States of America, 2001, 98(15): 8241-8246.
[16] BELENKY P, YE J, PORTER C M, et al. Bactericidal antibiotics induce toxic metabolic perturbations that lead to cellular damage
[J]. Cell Reports, 2015, 13(5): 968-980.
[17] CLARK T A, SPITTLE K E, TURNER S W, et al. Direct detection and sequencing of damaged DNA Bases [J]. Genome Integrity,
2011, 2(1): 1-9.
[18] JOHNSON R P, FLEMING A M, BEUTH L R, et al. Base flipping within the α-hemolysin latch allows single-molecule identification
of mismatches in DNA [J]. Journal of the American Chemical Society, 2015, 138(2): 594-603.
[19] MURAKAMI M, HIROKAWA H, HAYATA I. Analysis of radiation damage of DNA by atomic force microscopy in
comparison with agarose gel electrophoresis studies [J]. Journal of Biochemical and Biophysical Methods, 2000, 44(1/2): 31-40.
[20] SHEE C, COX B D, GU F, et al. Engineered proteins detect spontaneous DNA breakage in human and bacterial cells [J]. eLife,
2013, 2(24): e01222.
[21] UPHOFF S, REYES-LAMOTHE R, GARZA D, et al. Singlemolecule DNA repair in live bacteria [J]. Proceedings of the
National Academy of Sciences, 2013, 110(20): 8063-8068.
[22] STRACY M, JACIUK M, UPHOFF S, et al. Single-molecule imaging of UvrA and UvrB recruitment to DNA lesions in living
Escherichia coli [J]. Nature Communications, 2016, 7: 12568.
[23] KIDANE D, SANCHEZ H, ALONSO J C, et al. Visualization of DNA double-strand break repair in live bacteria reveals dynamic
recruitment of Bacillus subtilis RecF, RecO and RecN proteins to distinct sites on the nucleoids [J]. Molecular Microbiology, 2010,
52(6): 1627-1639.
[24] ELEZ M, MURRAY A W, BI L-J, et al. Seeing mutations in living cells [J]. Curr Biol, 2010, 20(16): 1432-1437.
[25] KAO Y T, SAXENA C, WANG L, et al. Direct observation of thymine dimer repair in DNA by photolyase [J]. Proceedings of
the National Academy of Sciences of the United States of America, 2005, 102(45): 16128-16132.
[26] MATTOSSOVICH R, MERLO R, MIGGIANO R, et al. O6-alkylguanine-DNA alkyltransferases in microbes living on the
edge: from stability to applicability [J]. International Journal of Molecular Sciences, 2020, 21(8): 2878.
[27] BLAINEY P, VAN OIJENT A, BANERJEE A, et al. A baseexcision DNA-repair protein finds intrahelical lesion bases by
fast sliding in contact with DNA [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006,
103(15): 5752-5757.
[28] ELF J, LI G W, XIE X S. Probing transcription factor dynamics at the single-molecule level in a living cell [J]. Science, 2007,
316(5828): 1191-1194.
[29] GORMAN J, WANG F, REDDING S, et al. Single-molecule imaging reveals target-search mechanisms during DNA mismatch
repair [J]. Proceedings of the National Academy of Sciences, 2012, 109(45): E3074-E3083.
[30] JIANG Y, KE C, MIECZKOWSKI P A, et al. Detecting ultraviolet damage in single DNA molecules by atomic force microscopy [J]. Biophysical Journal, 2007, 93(5): 1758-1767.
[31] VAN NOORT S J, VAN DER WERF K O, EKER A P, et al. Direct visualization of dynamic protein-DNA interactions with a dedicated atomic force microscope [J]. Biophysical Journal, 1998, 74(6): 2840-2849.
[32] LIN Y, ZHAO T, JIAN X, et al. Using the bias from flow to elucidate single DNA repair protein sliding and interactions with
DNA [J]. Biophysical Journal, 2009, 96(5): 1911-1917.
[33] TESSMER I, FRIED M G. Insight into the cooperative DNA binding of the O6-alkylguanine DNA alkyltransferase [J]. DNA
Repair, 2014, 20: 14-22.
[34] VINCENT M S, UPHOFF S. Cellular heterogeneity in DNA alkylation repair increases population genetic plasticity [J]. Nucleic
Acids Research, 2021, 49(21): 12320-12331.
[35] KELLEY W S, JOYCE C M. Genetic characterization of early amber mutations in the Escherichia coli polA gene and purification
of the amber peptides [J]. Journal of Molecular Biology, 1983, 164(4): 529-560.
[36] JOYCE C M, BENKOVIC S J. DNA polymerase fidelity: kinetics, structure, and checkpoints [J]. Biochemistry, 2004, 43(45): 14317-14324.
[37] SANTOSO Y, JOYCE C M, POTAPOVA O, et al. Conformational transitions in DNA polymerase I revealed by single-molecule FRET [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(3): 715-720.
[38] CHRISTIAN T D, ROMANO L J, RUEDA D. Single-molecule measurements of synthesis by DNA polymerase with base-pair
resolution [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(50): 21109-21114.
[39] MARKIEWICZ R P, VRTIS K B, DAVID R, et al. Single-molecule microscopy reveals new insights into nucleotide selection by DNA polymerase I [J]. Nucleic Acids Research, 2012, 40(16): 7975-7984.
[40] PAUSZEK R F, LAMICHHANE R, SINGH A R, et al. Singlemolecule view of coordination in a multi-functional DNA
polymerase [J]. eLife, 2021, 10: e62046.
[41] XIE P, SAYERS J R. A model for transition of 5′-nuclease domain of DNA polymerase I from inert to active modes [J]. PLoS One, 2011, 6(1): e16213.
[42] MULLINS E A, SHI R, PARSONS Z D, et al. The DNA glycosylase AlkD uses a non-base-flipping mechanism to excise
bulky lesions [J]. Nature, 2015, 527(7577): 254-258.
[43] CHEN L, HAUSHALTER K A, LIEBER C M, et al. Direct visualization of a DNA glycosylase searching for damage [J].
Chemistry & Biology, 2002, 9(3): 345-350.
[44] BLAINEY P C, OIJEN A M V, BANERJEE A, et al. A baseexcision DNA-repair protein finds intrahelical lesion bases by fast
sliding in contact with DNA [J]. PNAS, 2006, 103(15): 5752-5757.
[45] NELSON S R, DUNN A R, KATHE S D, et al. Two glycosylase families diffusively scan DNA using a wedge residue to probe for
and identify oxidatively damaged bases [J]. Proceedings of the National Academy of Sciences of the United States of America,
2014, 111(20): E2091-2099.
[46] KISKER C, KUPER J, HOUTEN B V. Prokaryotic nucleotide excision repair [J]. Cold Spring Harbor Perspectives in Biology,
2013, 5(3): a012591.
[47] MALTA E, MOOLENAAR G F, GOOSEN N. Dynamics of the UvrABC nucleotide excision repair proteins analyzed by
fluorescence resonance energy transfer [J]. Biochemistry, 2007, 46(31): 9080-9088.
[48] KAD N M, HONG W, KENNEDY G G, et al. Collaborative dynamic DNA scanning by nucleotide excision repair proteins
investigated by single-molecule imaging of quantum-dot-labeled proteins [J]. Molecular Cell, 2010, 37(5): 702-713.
[49] BAKSHI S, DALRYMPLE R M, LI W, et al. Partitioning of RNA polymerase activity in live Escherichia coli from analysis of singlemolecule diffusive trajectories [J]. Biophysical Journal, 2013, 105(12): 2676-2686.
[50] STRACY M, LESTERLIN C, FEDERICO G, et al. Live-cell superresolution microscopy reveals the organization of RNA
polymerase in the bacterial nucleoid [J]. Proceedings of the National Academy of Sciences of the United States of America,
2015, 112(32): E4390-4399.
[51] HOWAN K, SMITH A J, WESTBLADE L F, et al. Initiation of transcription-coupled repair characterized at single-molecule
resolution [J]. Nature, 2012, 490(7420): 431-434.
[52] COX M M, GOODMAN M F, KREUZER K N, et al. The importance of repairing stalled replication forks [J]. Nature, 2000,
404(6773): 37-41.
[53] PERUMAL S K, YUE H, HU Z, et al. Single-molecule studies of DNA replisome function [J]. BBA-Proteins and Proteomics, 2010,
1804(5): 1094-1112.
[54] LIAO Y, LI Y, SCHROEDER J W, et al. Single-molecule DNA polymerase dynamics at a bacterial replisome in live cells [J].
Biophysical Journal, 2016, 111(12): 2562-2569.
[55] ANDREW R, MCDONALD J P, CALDAS V, et al. Regulation of mutagenic DNA polymerase V activation in space and time [J].
PLoS Genetics, 2015, 11(8): e1005482.
[56] KATH J E, JERGIC S, HELTZEL J, et al. Polymerase exchange on single DNA molecules reveals processivity clamp control of
translesion synthesis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(21): 7647-7652.
[57] THRALL E S, KATH J E, CHANG S, et al. Single-molecule imaging reveals multiple pathways for the recruitment of translesion
polymerases after DNA damage [J]. Nature Communications, 2017, 8(1): 1-14.
[58] JEE J, RASOULY A, SHAMOVSKY I, et al. Rates and mechanisms of bacterial mutagenesis from maximum-depth sequencing [J]. Nature, 2016, 534(7609): 693-696.
[59] MARTÍN-LÓPEZ J V, FISHEL R. The mechanism of mismatch repair and the functional analysis of mismatch repair defects in
Lynch syndrome [J]. Familial Cancer, 2013, 12(2): 159-168.
[60] LIAO Y, SCHROEDER J W, GAO B, et al. Single-molecule motions and interactions in live cells reveal target search dynamics
in mismatch repair [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(50): E6898-
6906.
[61] MICHELE C, EVANGELOS S, HINGORANI M M, et al. Singlemolecule multiparameter fluorescence spectroscopy reveals
directional MutS binding to mismatched bases in DNA [J]. Nucleic Acids Research, 2012, 40(12): 5448-5464.
[62] JEONG C, CHO W K, SONG K M, et al. MutS switches between two fundamentally distinct clamps during mismatch repair [J].
Nature Structural & Molecular Biology, 2011, 18(3): 379-385.
[63] LIU J, HANNE J, BRITTON M B, et al. Cascading MutS and MutL sliding clamps control DNA diffusion to activate mismatch
repair [J]. Nature, 2016, 539: 583-587.
[64] MARCEAU A H. Functions of single-strand DNA-binding proteins in DNA replication, recombination, and repair [J]. Methods Mol Biol, 2012, 922(2012): 1-21.
[65] HENRIKUS S S, HENRY C, GHODKE H, et al. RecFOR epistasis group: RecF and RecO have distinct localizations and functions in Escherichia coli [J]. Nucleic Acids Research, 2019, 47(6): 2946-2965.
[66] BELL J C, BIAN L, KOWALCZYKOWSKI S C. Imaging and energetics of single SSB-ssDNA molecules reveal intramolecular
condensation and insight into RecOR function [J]. eLife, 2015, 4(50): 9857-9860.
[67] JOO C, MCKINNEY S A, NAKAMURA M, et al. Real-time observation of RecA filament dynamics with single monomer
resolution [J]. Cell, 2006, 126(3): 515-527.
[68] BELL J C, PLANK J L, DOMBROWSKI C C, et al. Direct imaging of RecA nucleation and growth on single molecules of
SSB-coated ssDNA [J]. Nature, 2012, 491(7423): 274-278.
[69] FORGET A L, KOWALCZYKOWSKI S C. Single-molecule imaging of DNA pairing by RecA reveals a three-dimensional
homology search [J]. Nature, 2011, 482(7385): 423-427.
[70] VLAMINCK I D, LOENHOUT M T J V, ZWEIFEL L, et al. Mechanism of homology recognition in DNA recombination from
dual-molecule experiments [J]. Molecular Cell, 2012, 46(5): 616-624.
[71] BADRINARAYANAN A, LE T, LAUB M T. Rapid pairing and resegregation of distant homologous loci enables double-strand
break repair in bacteria [J]. The Journal of Cell Biology, 2015, 210(3): 385-400.
[72] KIDANE D, GRAUMANN P L. Dynamic formation of RecA filaments at DNA double strand break repair centers in live cells
[J]. The Journal of Cell Biology, 2005, 170(3): 357-366.
[73] RENZETTE N, GUMLAW N, NORDMAN J T, et al. Localization of RecA in Escherichia coli K-12 using RecA-GFP [J]. Molecular
Microbiology, 2010, 57(4): 1074-1085.
[74] LESTERLIN C, BALL G, SCHERMELLEH L, et al. RecA bundles mediate homology pairing between distant sisters during
DNA break repair [J]. Nature, 506(7487): 249-253.
[75] GUNAWARDENA J. Models in biology:‘accurate descriptions of our pathetic thinking’ [J]. BMC Biology, 2014, 12(1): 1-11.
[76] LUIJSTERBURG M S, VON BORNSTAEDT G, GOURDIN A
M, et al. Stochastic and reversible assembly of a multiprotein DNA repair complex ensures accurate target site recognition and efficient repair [J]. Journal of Cell Biology, 2010, 189(3): 445-463.
[77] VERBRUGGEN P, HEINEMANN T, MANDERS E, et al. Robustness of DNA repair through collective rate control [J]. PLoS
Computational Biology, 2014, 10(1): e1003438.
[78] UPHOFF S, KAPANIDIS A N. Studying the organization of DNA repair by single-cell and single-molecule imaging [J]. DNA Repair, 2014, 20(100): 32-40.

Outlines

/