Brief Introduction of Nobel Prize

The development of click chemistry and bioorthogonal chemistry: A brief introduction to the Nobel Prize in Chemistry 2022

Expand
  • School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China

Received date: 2022-11-10

  Online published: 2022-12-19

Abstract

The Nobel Prize in Chemistry 2022 was awarded to Carolyn R. Bertozzi, Morten Meldal and K. Barry Sharpless for the development of click chemistry and bioorthogonal chemistry. The development history, typical works and key contributors in this area were briefly introduced in this article.

Cite this article

LI Suhua . The development of click chemistry and bioorthogonal chemistry: A brief introduction to the Nobel Prize in Chemistry 2022[J]. Chinese Journal of Nature, 2022 , 44(6) : 432 -442 . DOI: 10.3969/j.issn.0253-9608.2022.06.003

References

[1] KOLB H C, FINN M G, SHARPLESS K B. Click chemistry: diverse chemical function from a few good reactions [J]. Angew Chem Int Ed, 2001, 40: 2004-2021.
[2] SHARPLESS K B, KOLB H C. Book of Abstracts, 217th ACS National Meeting, Anaheim, CA. March 21-25, 1999 [C]. ORGA-105, 1999: 145538.
[3] HUISGEN R. Centenary lecture. 1,3-dipolar cycloadditions [J]. Proc Chem Soc London, 1961: 357-369.
[4] HUISGEN R. 1,3-Dipolar cycloadditions. Past and future [J]. Angew Chem Int Ed, 1963, 2: 565-598.
[5] LEWIS W G, GREEN L G, GRYNSZPAN F, et al. Click chemistry in situ: acetylcholinesterase as a reaction vessel for the selective
assembly of a femtomolar inhibitor from an array of building blocks [J]. Angew Chem Int Ed, 2002, 41: 1053-1057.
[6] SHARPLESS K B. Nobel lecture [Z/OL]. [2022-11-10]. https://www.nobelprize.org/prizes/chemistry/2001/sharpless/lecture/.

[7] TORNOE C W, CHRISTENSEN C, MELDAL M. Peptidotriazoleson solid phase: 1,2,3 -triazoles by regiospecific copper(I)-catalyzed
1,3-dipolar cycloadditions of terminal alkynes to azides [J]. J Org Chem, 2002, 67: 3057-3064.
[8] ROSTOVTSEV V V, GREEN L G, FOKIN V V, et al. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective
“ligation” of azides and terminal alkynes [J]. Angew Chem Int Ed, 2002, 41: 2596-2599.
[9] MIYAMOTO Y, KALISIAK J, KORTHALS K, et al. Expanded therapeutic potential in activity space of next-generation
5-nitroimidazole antimicrobials with broad structural diversity [J]. Proc Natl Acad Sci USA, 2013, 110: 17564-17569.
[10] KIM W J, KORTHALS K A, LI S, et al. Click chemistry-facilitated structural diversification of nitrothiazoles, nitrofurans, and
nitropyrroles enhances antimicrobial activity against giardia lamblia [J]. Antimicrob Agents Chemother, 2017, 61: e02397-16.
[11] CHAN T R, HILGRAF R, SHARPLESS K B, et al. Polytriazoles as copper(I)-stabilizing ligands in catalysis [J]. Org Lett, 2004, 6:
2853-2855.
[12] WANG Q, CHAN T R, HILGRAF R, et al. Bioconjugation by copper(I)-catalyzed azide-alkyne [3+2] cycloaddition [J]. J Am Chem Soc, 2003, 125: 3192-3193.
[13] DEL AMO D S, WANG W, JIANG H, et al. Biocompatible copper(I) catalysts for in vivo imaging of glycans [J]. J Am Chem
Soc, 2010, 132: 16893-16899.
[14] BESANCENEY-WEBLER C, JIANG H, ZHENG T, et al. Increasing the efficacy of bioorthogonal click reactions for bioconjugation: a comparative study [J]. Angew Chem Int Ed, 2011, 50: 8051-8056.
[15] WANG W, HONG S, ANDREW T, et al. Sulfated ligands for the copper(I)-catalyzed azide-alkyne cycloaddition [J]. Chem Asian J,
2011, 6: 2796-2802.
[16] MENG G, GUO T, MA T, et al. Modular click chemistry libraries for functional screens using a diazotizing reagent [J]. Nature, 2019,
574: 86-89.
[17] DONG J J, KRASNOVA L, FINN M G, et al. Sulfur(VI) fluoride exchange (SuFEx): another good reaction for click chemistry [J].
Angew Chem Int Ed, 2014, 53: 9430-9448.
[18] DONG J, SHARPLESS K B, KWISNEK L, et al. SuFEx-based synthesis of polysulfates [J]. Angew Chem Int Ed, 2014, 53: 9466-
9470.
[19] GAO B, ZHANG L, ZHENG Q, et al. Bifluoride-catalysed sulfur(VI) fluoride exchange reaction for the synthesis of polysulfates and polysulfonates [J]. Nat Chem, 2017, 9: 1083-1088.
[20] CHEN W, DONG J, PLATE L, et al. Arylfluorosulfates inactivate intracellular lipid binding protein(s) through chemoselective SuFEx
reaction with a binding site Tyr residue [J]. J Am Chem Soc, 2016, 138: 7353-7364.
[21] MORTENSON D E, BRIGHTY G J, PLATE L, et al. “Inverse drug discovery” strategy to identify proteins that are targeted by latent
electrophiles as exemplified by aryl fluorosulfates [J]. J Am Chem Soc, 2018, 140: 200-210.
[22] LI S, WU P, MOSES J E, et al. Multidimensional SuFEx click chemistry: sequential sulfur(VI) fluoride exchange connections of
diverse modules launched from an SOF4 hub [J]. Angew Chem Int Ed, 2017, 56: 2903-2908.
[23] LI S, LI G, GAO B, et al. SuFExable polymers with helical structures derived from thionyl tetrafluoride [J]. Nat Chem, 2021,
13: 858-867.
[24] BRIGHTY G J, BOTHAM R C, LI S, et al. Using sulfuramidimidoyl fluorides that undergo sulfur(VI) fluoride exchange for inverse drug discovery [J]. Nat Chem, 2020, 12: 906-913.
[25] KAYSER H, ZEITLER R, KANNICHT C, et al. Biosynthesis of a nonphysiological sialic acid in different rat organs, using N-propanoyl-D-hexosamines as precursors [J]. J Biol Chem, 1992, 267: 16934-16938.
[26] STAUDINGER H, MEYER J. Über n eue o rgan is che phosphorverbindungen III. phosphinmethylenderivate und phosphinimine [J]. Helv Chim Acta, 1919, 2: 635-646.
[27] SAXON E, BERTOZZI C R. Cell surface engineering by a modified staudinger reaction [J]. Science, 2000, 287: 2007-2010.
[28] HANG H C, YU C, KATO D L, et al. A metabolic labeling approach toward proteomic analysis of mucin-type O-linked glycosylation [J]. Proc Natl Acad Sci USA, 2003, 100: 14846-14851.
[29] SLETTEN E M, BERTOZZI C R. From mechanism to mouse: a tale of two bioorthogonal reactions [J]. Acc Chem Res, 2011, 44: 666-676.
[30] BASKIN J M, PRESCHER J A, LAUGHLIN S T, et al. Copper-free click chemistry for dynamic in vivo imaging [J]. Proc Natl Acad Sci
USA, 2007, 104: 16793-16797.
[31] CHANG P V, PRESCHER J A, SLETTEN E M, et al. Copperfree click chemistry in living animals [J]. Proc Natl Acad Sci USA,
2010, 107: 1821-1826.
[32] CONTE M L, STADERINI S, MARRA A, et al. Multi-molecule reaction of serum albumin can occur through thiol-yne coupling [J].
Chem Commun, 2011, 47: 11086-11088.
[33] BOGER D L, PANEK J S. Diels-Alder reaction of heterocyclic azadienes. I. Thermal cycloaddition of 1,2,4-triazine with enamines:
simple preparation of substituted pyridines [J]. J Org Chem, 1981, 46: 2179-2182.
[34] BOGER D L, PANEK J S. Inverse electron demand Diels-Alder reactions of heterocyclic azadienes: formal total synthesis of
streptonigrin [J]. J Am Chem Soc, 1985, 107: 5745-5754.
[35] BOGER D L. Diels-Alder reactions of heterocyclic aza dienes. Scope and applications [J]. Chem Rev, 1986, 86: 781-793.
[36] BOGER D L, SAKYA S M. Inverse electron demand Diels-Alder reactions of 3,6-bis(methylthio)-1,2,4,5-tetrazine:
1,2-diazine introduction and direct implementation of a divergent 1,2,4,5-tetrazine → 1,2-diazine → benzene (indoline/indole) Diels-
Alder strategy [J]. J Org Chem, 1988, 53: 1415-1423.
[37] BLACKMAN M L, ROYZEN M, FOX J M. Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder
reactivity [J]. J Am Chem Soc, 2008, 130: 13518-13519.
[38] WU K, YEE N A, SRINIVASAN S, et al. Click activated protodrugs against cancer increase the therapeutic potential of chemotherapy through local capture and activation [J]. Chem Sci, 2021, 12: 1259-1271.

Outlines

/