Brief Introduction of Nobel Prize

The road of quantum entanglement: from Einstein to 2022 Nobel Prize in Physics

Expand
  • Department of Physics, Fudan University, Shanghai 200433, China

Received date: 2022-11-22

  Online published: 2022-12-19

Abstract

We explain the achievements awarded by 2022 Nobel Prize in Physics, as well as the preceding and the later developments, review the main notions and historic cornerstones of Bell inequalities and related researches on quantum entanglement, and explain the key physical ideas.

Cite this article

SHI Yu . The road of quantum entanglement: from Einstein to 2022 Nobel Prize in Physics[J]. Chinese Journal of Nature, 2022 , 44(6) : 455 -465 . DOI: 10.3969/j.issn.0253-9608.2022.06.005

References

[1] The Nobel Prize. The Nobel Prize in Physics 2022 [EB/OL]. (2022-10-04)[2022-11-20]. https://www.nobelprize.org/prizes/
physics/2022/press-release.

[2] 施郁. 继续量子科学革命[N]. 光明日报, 2017-05-25(13).

[3] DOWLING J P, MILBURN G J. Quantum technology: the second quantum revolution [J]. Proc Trans R Soc Lond A, 2003, 361: 1655-

1674.

[4] 施郁. 100年前的今天,逗留上海的爱因斯坦收到诺奖通知 [EB/OL]. (2022-11-13)[2022-10-20]. https://mp.weixin.qq.com/
s/2ArJ0pg6xPgoYb5ATNHx9gc.
[5] The Nobel Prize. The Nobel Prize in Physics 1921, Albert Einstein[EB/OL]. (2022-10-04)[2022-10-20]. https://www.nobelprize.org/prizes/physics/1921/einstein/facts.
[6] EINSTEIN A. Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heurischen Gesichtspunkt [J]. Ann Phys, 1905,
17: 132-148.
[7] PAIS A. Subtle is the Lord [M]. Oxford: Oxford University Press, 1982.
[8] EINSTEIN A, PODOLSKY B, ROSEN N. Can quantum-mechanical description of physical reality be considered complete? [J]. Phys
Rev, 1935, 47: 777-780.
[9] 施郁. 揭秘量子密码、量子纠缠与量子隐形传态[J]. 自然杂志, 2016, 38(4): 241-247.
[10] SCHRÖDINGER E. Discussion of probability relations between separated systems [J]. Mathematical Proceedings of the Cambridge
Philosophical Society, 1935, 31: 555.
[11] SCHRÖDINGER E. Die gegenwärtige situation in der quantenmechanik [J]. Naturwissenschaften, 1935, 23: 807-812.
[12] BOHR N. Can quantum-mechanical description of physical reality be considered complete? [J]. Phys Rev, 1935, 48: 696-702.
[13] BOHM D. Quantum theory [M]. New York: Prentice-HallInc, 1951.
[14] BOHM D, AHARONOV Y. Discussion of experimental proof for the paradox of Einstein, Rosen, and Podolsky [J]. Phys Rev, 1957,
108: 1070.
[15] WU C S, SHAKNOV I. The angular correlation of scattered annihilation radiation [J]. Phys Rev, 1950, 77: 136.
[16] VON NEUMANN J. Mathematische grundlagen der quantenmechanik [M]. Berlin: Springer, 1932.
[17] BELL J. On the problem of hidden variables in quantum mechanics [J]. Rev Mod Phys, 1966, 38: 447-452.
[18] BELL J. On Einstien-Podolsy-Rosen paradox [J]. Physics, 1964, 1: 195-200.
[19] CLAUSER J F, HORNE M A, SHIMONY A, et al. Proposed experiment to test local hidden-variable theories [J]. Phys Rev Lett,
1969, 23: 880-884.
[20] GREENBERGER D M, HORNE M A, SHIMONY A, et al. Bell’s theorem without inequalities [J]. American Journal of Physics, 1990,
58: 1131-1143.
[21] KOCHER C A, COMMINS E D. Polarization correlation of photons emitted in an atomic cascade [J]. Phys Rev Lett, 1967, 18: 575.
[22] FREEDMAN S J, CLAUSER J F. Experimental test of local hiddenvariable theories [J]. Phys Rev Lett, 1972, 28: 938.
[23] ASPECT A, GRANGIER P, ROGER G. Experimental tests of realistic local theories via Bell's Theorem [J]. Phys Rev Lett, 1981,
47: 460.
[24] ASPECT A, GRANGIER P, ROGER G. Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment: a new
violation of Bell's inequalities [J]. Phys Rev Lett, 1982, 49: 91.
[25] ASPECT A, DALIBARD J, GÉRARD R. Experimental test of Bell's inequalities using time-varying analyzers [J]. Phys Rev Lett, 1982,
49: 1804.
[26] ASPECT A. Proposed experiment to test the nonseparability of quantum mechanics [J]. Phys Rev D, 1976, 14: 1944.
[27] WEIHS G, JENNEWEIN T, SIMON C, et al. Violation of Bell's inequality under strict Einstein locality conditions [J]. Phys Rev
Lett, 1998, 81: 5039.
[28] KWIAT P G, MATTLE K, WEINFURTER H, et al. New highintensity source of polarization-entangled photon pairs [J]. Phys Rev
Lett, 1995, 75: 4337.
[29] SHIH Y H, ALLEY C O. New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical
parametric down conversion [J]. Phys Rev Lett, 1993, 61: 2921-2924.
[30] OU Z Y, MANDLE L. Violation of Bell's inequality and classical probability in a two-photon correlation experiment [J]. Phys Rev
Lett, 1988, 61: 50-53.
[31] ASPECT A. Closing the door on Einstein and Bohr's quantum debate [J]. Physics, 2015, 8: 123.
[32] ROWE M A, KIELPINSKI D, MEYER V, et al. Experimental violation of a Bell's inequality with efficient detection [J]. Nature,
2001, 409: 791-794.
[33] MATSUKEVICH D N, MAUNZ P, MOEHRING D L, et al. Bell inequality violation with two remote atomic qubits [J]. Phys Rev
Lett, 2008, 100: 150404.
[34] GIUSTINA M, MECH A, RAMELOW S, et al. Bell violation using entangled photons without the fair-sampling assumption [J]. Nature, 2013, 497: 227-230.
[35] CHRISTENSEN B G, MCCUSKER K T, ALTEPETER J B, et al. Detection-loophole-free test of quantum nonlocality, and
applications [J]. Phys Rev Lett, 2013, 111: 130406.
[36] GIUSTINA M, VERSTEEGH M A V, WENGEROWSKY S, et al. Significant-loophole-free test of Bell's theorem with entangled
photons [J]. Phys Rev Lett, 2015, 115: 250401.
[37] SHALM L K, MEYER-SCOTT E, CHRISTENSEN B G, et al. Strong loophole-free test of local realism [J]. Phys Rev Lett, 2015, 115: 250402.
[38] HENSEN B, BERNIEN H, DRÉAU A E, et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres
[J]. Nature, 2015, 526: 682.
[39] ROSENFELD W, BURCHARDT D, GARTHOFF R, et al. Eventready bell test using entangled atoms simultaneously closing detection and locality loopholes [J]. Phys Rev Lett, 2017, 119: 010402.
[40] The BIG Bell Test Collaboration. Challenging local realism with human choices [J]. Nature, 2018, 557: 212-216.
[41] 施郁. 最新Nature:10万游戏玩家助力13个量子实验[EB/OL]. (2018-05-10)[2022-11-20]. http://www.zhishifenzi.com/news/
physics/211.html.
[42] LEGGETT A J. Nonlocal hidden-variable theories and quantum mechanics: an incompatibility theorem [J]. Foundations of Physics,
2003, 33: 1469.
[43] SHI Y, YANG J. Particle physics violating crypto-nonlocal realism [J]. European Physical Journal C, 2020, 80: 861.
[44] 施郁. 量子信息、量子通信和量子计算释疑[J]. 现代物理知识, 2016, 28: 19-21.
[45] 施郁. 量子计算、量子优势与有噪中程量子时代[J]. 自然杂志, 2020, 42: 295-300.
[46] 施郁. 通向量子计算和量子信息之路[J]. 世界科学, 2020, 4: 10-12.
[47] WOOTTERS W K, ZUREK W H. A single quantum cannot be cloned [J]. Nature, 1982, 299: 802.
[48] DIEKS D. Communication by EPR devices [J]. Phys Lett A, 1982, 92: 271.
[49] BENNETT C H, BRASSARD G, CRÉPEAU C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-
Rosen channels [J]. Phys Rev Lett, 1993, 70: 1895.
[50] BOUWMEESTER D, PAN J-W, MATTLE K, et al. Experimental quantum teleportation [J]. Nature, 1997, 390: 575-579.
[51] BOSCHI D, BRANCA S, DE MARTINI F, et al. Experimental realization of teleporting an unknown pure quantum state via dual
classical and Einstein-Podolsky-Rosen channels [J]. Phys Rev Lett, 1998, 80: 1121.
[52] ZUKOWSKI M, ZEILINGER A, HORNE M A, et al. “Event-readydetectors” Bell experiment via entanglement swapping [J]. Phys Rev
Lett, 1993, 71: 4287.
[53] PAN J-W, BOUWMEESTER D, WEINFURTER H, et al. Experimental entanglement swapping: entangling photons that never interacted [J]. Phys Rev Lett, 1998, 80: 3891.
[54] BENNETT C H, BRASSARD G. Quantum cryptography: Public key distribution and coin tossing [C]// Proceedings of IEEE International Conference on Computer System and Signal Processing. Bangalore, 1984.
[55] LIAO S-K, CAI W Q, LIU W Y, et al. Satellite-to-ground quantum key distribution [J]. Nature, 2017, 549: 43-47.
[56] REN J-G, XU P, YONG H L, et al. Ground-to-satellite quantum teleportation [J]. Nature, 2017, 549: 70-73.
[57] YIN J, CAO Y, LI Y H, et al. Satellite-based entanglement distribution over 1200 kilometers [J]. Science, 2017, 356: 1140-
1144.
[58] LIAOS-K, CAI W-Q, HANDSTEINER J, et al. Satellite-relayed intercontinental quantum network [J]. Phys Rev Lett, 2018, 120:
030501.
[59] LU C-Y, CAO Y, PENG C-Z, et al. Micius quantum experiments in space [J]. Rev Mod Phys, 2022, 94: 035001.
[60] EKERT A K. Quantum cryptography based on Bell's theorem [J]. Phys Rev Lett, 1991, 67: 661.
[61] URSIN R, TIEFENBACHER F, SCHMITT-MANDERBACH T, et al. Entanglement-based quantum communication over 144 km [J].
Nature Physics, 2007, 3: 481-486.
[62] NADLINGERD P, DRMOTA P, NICHOL B C, et al. Experimental quantum key distribution certified by Bell's theorem [J]. Nature,
2022, 607: 682-686.
[63] ZHANG W, VAN LEENT T, REDEKER K, et al. A deviceindependent quantum key distribution system for distant users [J].
Nature, 2022, 607: 687-691.
[64] LIU W-Z, ZHANG Y Z, ZHEN Y Z, et al. Toward a photonic demonstration of device-independent quantum key distribution [J].
Phys Rev Lett, 129, 2022: 050502.
[65] BENNETTC H, BRASSARD G, MERMIN N D. Quantum cryptography without Bell's theorem [J]. Phys Rev Lett, 1992, 68: 557.
[66] YIN J, LI Y-H, LIAO S-K, et al. Entanglement-based secure quantum cryptography over 1120 kilometres [J]. Nature, 2020, 582:
501-505.
[67] LI B, CAO Y, LI Y-H, et al. Quantum state transfer over 1200 km assisted by prior distributed entanglement [J]. Phys Rev Lett, 2022, 128: 170501.

Outlines

/