Invited Special Paper

Technology for terahertz wave manipulation: harnessing the light of terahertz

Expand
  • Institute of Laser & Opto-electronics, Tianjin University, Tianjin 300072, China

Received date: 2022-10-11

  Online published: 2023-02-10

Abstract

With the deepening of research, terahertz (THz) science and technology becomes increasingly prominent in many fields for both basic research and engineering applications. Radiation source, transmission and control, detection and sensing are three important
aspects that need to be explored in the further development of THz technology. The common basis of THz wave applications is to
make the effective interaction with the material for carrying information or transmitting power. To implement these processes, we
need to control the electromagnetic parameters like amplitude, phase, frequency, polarization, wavefront and the photonic parameters like spin and orbital angular momentum of THz wave. The above manipulation can be carried out directly at the radiation source or additional functional devices in the transmission process. In this paper, several representative source- and device-based THz manipulation technologies are introduced, and the basic principles, development history and latest progress are summarized. The development of THz manipulation technology will lay a solid foundation for the further application of THz wave.

Cite this article

YAO Jianquan, LI Jie, ZHANG Yating, DING Xin, WU Liang . Technology for terahertz wave manipulation: harnessing the light of terahertz[J]. Chinese Journal of Nature, 2023 , 45(1) : 1 -16 . DOI: 10.3969/j.issn.0253-9608.2023.01.001

References

[1] ROGALSKI A, SIZOV F. Terahertz detectors and focal plane arrays [J]. Opto-Electronics Review, 2011, 19(3): 346-404.
[2] ZHAO Y, ZHAI W, ZHAO J, et al. A comprehensive survey of 6G wireless communications [C]//Future of Information and Communication Conference, 2020. DOI: 10.13140/RG.2.2.13081.65129.
[3] NAGATSUMA T. Terahertz communications: past, present and future [C]//2015 40th International Conference on Infrared,
Millimeter, and Terahertz Waves (IRMMW-THz), 2015: 1-2. DOI: 10.1109/IRMMW-THz.2015.7327418.
[4] YOU X, WANG C X, HUANG J, et al. Towards 6G wireless communication networks: vision, enabling technologies, and new
paradigm shifts [J]. Science China Information Sciences, 2021, 64(1): 110301.
[5] DALTON G, TRAGERC S, ABRAMS D C, et al. Final design and build progress of WEAVE: the next generation widefield
spectroscopy facility for the William Herschel telescope [C]// EVANS C J, SIMARD L, TAKAMI H (eds). Ground-based and
Airborne Instrumentation for Astronomy VI, Proc of SPIE, 2016, 9908: 99081G. DOI: 10.1117/12.2231078.

[6] SHI S C, PAINE S, YAO Q J, et al. Terahertz and far-infrared windows opened at Dome A in Antarctica [J]. Nature Astronomy,

2017, 1(1): 0001.
[7] YANG X, ZHAO X, YANG K, et al. Biomedicalapplicationsoftera hertz spectroscopy and imaging [J]. Trends in Biotechnology, 2016, 34(10): 810-824.
[8] BOWMAN T C, EL-SHENAWEE M, CAMPBELL L K. Terahertz imaging of excised breast tumor tissue on paraffin sections [J]. IEEE
Transactions on Antennas and Propagation, 2015, 63(5): 2088-2097.
[9] BEAUREPAIRE E, MERLE J-C, DAUNOIS A, et al. Ultrafast spin dynamics in ferromagnetic nickel [J]. Physical Review Letters,
1996, 76(22): 4250-4253.
[10] BEAUREPAIRE E, TURNER G M, HARREL S M, et al. Coherent terahertz emission from ferromagnetic films excited by femtosecond laser pulses [J]. Appl Phys Lett, 2004, 84: 3465-3467.
[11] 金钻明, 宋邦菊, 李炬赓, 等. 基于超快电子自旋动力学的太赫兹辐射研究进展[J]. 中国激光, 2019, 46(5): 53-65. DOI: 10.3788/
CJL201946.0508005.
[12] KAMPFRATH T, BATTIATO M, MALDONADO P, et al. Terahertz spin current pulses controlled by magnetic heterostructures
[J]. Nature Nanotech, 2013, 8(4): 256-260. DOI: 10.1038/nnano.2013.43.
[13] JUNGFLEISCH M B, ZHANG Q, ZHANG W, et al. Control of terahertz emission by ultrafast spin-charge current conversion at
Rashba interfaces [J]. Phys Rev Lett, 2018, 120: 207207.
[14] ZHOU C, LIU Y P, WANG Z, et al. Broadband terahertz generation via the interface inverse Rashba-Edelstein effect [J]. Phys Rev Lett, 2018, 121: 086801.
[15] JIN Z, PENG Y, NI Y, et al. Cascaded amplification and manipulation of terahertz emission by flexible spintronic heterostructures [J]. Laser & Photonics Review, 2022, 16(9): 2100688.
[16] AGARWAL P, HUANG L, TER LIM S, et al. Electric-field control of nonlinear THz spintronic emitters [J]. Nat Commun, 2022, 13:
4072.
[17] ZHAO H, CHEN X, OUYANG C, et al. Generation and manipulation of chiral terahertz waves in the three-dimensional
topological insulator Bi2Te3 [J]. Advanced Photonics, 2020, 2(6): 066003.
[18] JIA W, LIU M, LU Y, et al. Broadband terahertz wave generation from an epsilon-near-zero material [J]. Light Sci Appl, 2021, 10(1): 115-122.
[19] LU Y, FENG X, WANG Q, et al. Integrated terahertz generatormanipulators using epsilon-near-zero-hybrid nonlinear metasurfaces [J]. Nano Letters, 2021, 21(18): 7699-7707.
[20] MCDONNELL C, DENG J, SIDERIS S, et al. Terahertz metagrating emitters with beam steering and full linear polarization control [J]. Nano Lett, 2022, 22: 2603-2610.
[21] LANDY N I, SAJUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber [J]. Phys Rev Lett, 2008, 100: 207402.
[22] TAO H, LANDY N I, BINGHAM C M, et al. A metamaterial absorber for the terahertz regime: design, fabrication and
characterization [J]. Optics Express, 2008, 16(10): 7181-7188.
[23] ZHAO X, WANG Y, SCHALCH J, et al. Optically modulated ultrabroadband all silicon metamaterial terahertz absorber [J]. ACS
Photonics, 2019, 6(4): 830-837.
[24] MA W, CHEN H, HOU S, et al. Compressible highly stable 3D porous MXene/GO foam with a tunable high-performance stealth
property in the terahertz band [J]. ACS Appl Mater Interfaces, 2019, 11(28): 25369-25377.
[25] DONG D S, YANG J, CHENG Q, et al. Terahertz broadband lowreflection metasurface by controlling phase distributions [J]. Adv
Optical Mater, 2015, 3: 1405-1410.
[26] YU N, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction
[J]. Science, 2011, 334(6054): 333-337.
[27] HE J, WANG X, HU D, et al. Generation and evolution of the terahertz vortex beam [J]. Optics Express, 2013, 21(17): 20230-
20239.
[28] ZHANG X, TIAN Z, YUE W, et al. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase
discontinuities [J]. Advanced Materials, 2013, 25(33): 4567-4572.
[29] PAPAKOSTAS A, POTTS A, BAGNALL D M, et al. Optical manifestations of planar chirality [J]. Physical Review Letters, 2003,
90(10): 107404.
[30] GORDON R, BROLO A G, MCKINNON A, et al. Strong polarization in the optical transmission through elliptical nanohole
arrays [J]. Phys Rev Lett, 2004, 92(3): 037401.
[31] LI T, LIU H, WANG S M, et al. Manipulating optical rotation in
extraordinary transmission by hybrid plasmonic excitations [J]. Appl Phys Lett, 2008, 93(2): 021110.
[32] ZHANG S, PARK Y S, LI J, et al. Negative refractive index in chiral metamaterials [J]. Phys Rev Lett, 2009, 102(2): 023901.
[33] CONG L, CAO W, ZHANG X, et al. A perfect metamaterial polarization rotator [J]. Appl Phys Lett, 2013, 103(17): 171107.
[34] CONG L, XU N, GU J, et al. Highly flexible broadband terahertz metamaterial quarter-wave plate [J]. Laser Photonics Rev, 2014, 8(4): 626-632.
[35] KENNEY M, LI S, ZHANG X, et al. Pancharatnam-Berry phase induced spin-selective transmission in herringbone dielectric
metamaterials [J]. Adv Mater, 2016, 28(43): 9567-9572.
[36] LI J, LI J, ZHENG C, et al. Lossless dielectric metasurface with giant intrinsic chirality for terahertz wave [J]. Opt Express, 2021, 29(18): 28329-28337.
[37] GRADY N K, HEYES J E, CHOWDHURY D R, et al. Terahertz metamaterials for linear polarization conversion and anomalous
refraction [J]. Science, 2013, 340(6138): 1304-1307.
[38] LIU L, ZHANG X, KENNEY M, et al. Broadband metasurfaces with simultaneous control of phase and amplitude [J]. Adv Mater,
2014, 26(29): 5031-5036.
[39] WANG Q, PLUM E, YANG Q, et al. Reflective chiral metaholography: multiplexing holograms for circularly polarized waves
[J]. Light Sci Appl, 2018, 7(1): 25.
[40] LI J, YUE Z, LI J, et al. Wavefront-controllable all-silicon terahertz meta-polarizer [J]. Sci China Mater, 2022. https://doi.org/10.1007/s40843-022-2126-0.
[41] LI J, LI J, YUE Z, et al. Structured vector field manipulation of terahertz wave along the propagation direction based on dielectric metasurfaces [J]. Laser Photonics Rev, 2022: 2200325.
[42] ARBABI A, HORIE Y, BAGHERI M, et al. Dielectric metasurfaces for complete control of phase and polarization with
subwavelength spatial resolution and high trans-mission [J]. Nature Nanotechnology, 2015, 10(11): 937-943.
[43] LIU S, CUI T J, XU Q, et al. Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves [J]. Light Sci Appl, 2016, 5(5): e16076.
[44] BALTHASAR MUELLER J P, RUBIN N A, DEVLIN R C, et al. Metasurface polarization optics: Independent phase control of
arbitrary orthogonal states of polarization [J]. Physical Review Letters, 2017, 118(11): 1-5.
[45] ZHANG H, ZHANG X, XU Q, et al. High-efficiency dielectric metasurfaces for polarization dependent terahertz wavefront
manipulation [J]. Adv Optical Mater, 2017: 1700773. DOI: 10.1002/adom.201700773.
[46] XU Y, LI Q, ZHANG X, et al. Spin-decoupled multifunctional metasurface for asymmetric polarization generation [J]. ACS
Photonics, 2019, 6(11): 2933-2941.
[47] LI J, ZHENG C, LI J, et al. Terahertz wavefront shaping with multichannel polarization conversion based on all-dielectric metasurface [J]. Photonics Res, 2021, 9(10): 1939-1947.
[48] LI J, YUE Z, LI J, et al. Diverse terahertz wavefront manipulations empowered by the spatially interleaved metasurfaces [J]. Science China Information Sciences, 2022.
[49] CHEN H T, PADILLA W J, ZIDE J M O, et al. Active terahertz metamaterial devices [J]. Nature, 2006, 444(7119): 597-600.
[50] KYOUNG J S, SEO M A, KOO S M, et al. Active terahertz metamaterials: nano-slot antennas on VO2 thin films [J]. Phys Status
Solidi Curr Top Solid State Phys, 2011, 8(4): 1227-1230.
[51] ZHANG S, ZHOU J, PARK Y S, et al. Photoinduced handedness switching in terahertz chiral metamolecules [J]. Nat Commun, 2012, 3: 942.
[52] LEE S H, CHOI M, KIM T T, et al. Switching terahertz waves with gate-controlled active graphene metamaterials [J]. Nat Mater, 2012, 11(11): 936-941.
[53] XIE Z, WANG X, YE J, et al. Spatial terahertz modulator [J]. Sci Rep, 2013, 3: 3347.
[54] CHEN S, FAN F, WANG X, et al. Terahertz isolator based on nonreciprocal magneto-metasurface [J]. Opt Express, 2015, 23(2):
1015.
[55] KIM T T, OH S S, KIM H D, et al. Electrical access to critical coupling of circularly polarized waves in graphene chiral
metamaterials [J]. Sci Adv, 2017, 3(9): e1701377.
[56] LI J, LI J, ZHENG C, et al. Broadband and tunable terahertz absorption via photogenerated carriers in undoped silicon [J]. Sci
China Phys, Mech Astron, 2022, 65(1): 214211.
[57] CHEN B, WU J, LI W, et al. Programmable terahertz metamaterials with non‐volatile memory [J]. Laser & Photonics Review, 2022, 16(4): 2100472.
[58] FU X, SHI L, YANG J, et al. Flexible terahertz beam manipulations based on liquid-crystal-integrated programmable metasurfaces [J]. ACS Applied Materials & Interfaces, 2022, 14(19): 22287-22294.

Outlines

/