专题综述

人源大麻素受体的结构生物学研究

展开
  • ①上海科技大学 iHuman研究所,上海 201210;② 上海科技大学 生命科学与技术学院,上海 201210

收稿日期: 2020-10-01

  网络出版日期: 2021-02-25

Structural studies of human cannabinoid receptors 

Expand
  • ① iHuman Institute, ShanghaiTech University, Shanghai 201210, China; ② School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China

Received date: 2020-10-01

  Online published: 2021-02-25

摘要

据史料记载,早在公元200年前中国已将大麻(cannabis)用于镇痛及其他疾病的治疗,随后人们在娱乐和宗教活动中也开始使用大麻。随着科学技术的不断进步,大麻中的多种活性成分被逐步鉴定出来,其中就包含具有精神活性的四氢大麻酚(Δ9 -tetrahydrocannabinol, Δ9 -THC)。这些活性成分是一类结构和功能多样的化学物质,统称为大麻素 (cannabinoid)。20世纪90年代初期,科学家们发现人体和一些动物体内存在一类内源性大麻素系统,该系统参与调控体内的多种生理过程,其中包含内源性大麻素和大麻素受体(cannabinoid receptor)。目前人体中已知的大麻素受体属于G蛋白偶联受体(G protein coupled receptor, GPCR),主要包含大麻素受体亚型I(cannabinoid receptor type 1, CB1)和大麻素受体亚型II(cannabinoid receptor type 2, CB2),其中CB1主要分布在中枢神经系统,而CB2在外 周免疫系统中高量表达。它们介导的信号通路与多种疾病密切相关,是非常重要的药物靶标。大麻素主要包括植物性大麻 素(phytocannabinoids)、内源性大麻素(endocannabinoids)和合成型大麻素(synthetic cannabinoids)等三大类。文章回顾了大麻及大麻素的历史,总结了大麻素受体CB1和CB2的结构与功能研究进展,以及它们在学习与认知、情 绪、肥胖、疼痛及免疫等相关疾病治疗中的应用前景。

本文引用格式

沈灵, 华甜, 刘志杰 . 人源大麻素受体的结构生物学研究[J]. 自然杂志, 2021 , 43(1) : 25 -31 . DOI: 10.3969/j.issn.0253-9608.2021.01.004

Abstract

 Marijuana from Cannabis sativa L. has been used for both therapeutic and recreational purpose for many centuries. Δ9 - tetrahydrocannabinol (Δ9 -THC), the main psychoactive constituent of marijuana, was discovered and isolated in 1964. In the early 1990s, the endocannabinoid system was identified in mammalian species. The cannabinoids from marijuana and endocannabinoids exert their effects mainly through the cannabinoid receptors CB1 and CB2, which belong to the G protein-coupled receptors (GPCRs). CB1 is highly expressed in the central nervous system, while CB2 is widely distributed in the immune system. CB1 and CB2 can regulate a variety of central and peripheral physiological processes and are very important drug targets for treating diverse diseases. Here, we briefly summarized the history of cannabinoids and the progress in the structural and functional studies of CB1 and CB2, and discussed their therapeutic potentials in learning, mood, obesity, pain and inflammation.

参考文献

[1] PERTWEE R G. Cannabinoid pharmacology: the first 66 years [J]. Br J Pharmacol, 2006, 147(S1): S163-171.

[2] GAONI Y, MECHOULAM R. Isolation, structure, and partial synthesis of an active constituent of hashish [J]. J Am Chem Soc, 1964, 86(8): 1646-1647.

[3] AVICO U, PACIFICI R, ZUCCARO P. Variations of tetrahydrocannabinol content in cannabis plants to distinguish the fibre-type from drug-type plants [J]. Bull Narc, 1985, 37: 61-65.

[4] XU S W, LIU H. Promising prospect of developing industrial hemp [J]. China Textile Leader, 2005, 8: 22-26.

[5] LEMBERGER L. Potential therapeutic usefulness of marijuana [J]. Annu Rev Pharmacol Toxicol, 1980, 20: 151-172. 

[6] ADAMS R, HUNT M, CLARK J H. Structure of cannabidiol, a product isolated from the marihuana extract of minnesota wild hemp [J]. J Chem Soc, 1940, 62: 196-200. 

[7] JACOB A, TODD A R. Cannabis indica. Part II. Isolation of cannabidiol from Egyptian hashish. Observations on the structure of cannabinol [J]. J Chem Soc, 1940: 649-653. 

[8] DEVANE W A, HANUS L, BREUER A, et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor [J]. Science, 1992, 258: 1946-1949. 

[9] FORD B M, TAI S, FANTEGROSSI W E, et al. Synthetic pot: Not your grandfather’s marijuana [J]. Trends Pharmacol Sci, 2017, 38: 257-276. 

[10] PACHER P, KUNOS G. Modulating the endocannabinoid system in human health and disease — successes and failures [J]. FEBS J, 2013, 280: 1918-1943. 

[11] GLEASON K A, BIRNBAUM S G, SHUKLA A, et al. Susceptibility of the adolescent brain to cannabinoids: long-term

hippocampal effects and relevance to schizophrenia [J]. Transl Psychiatry, 2012, 2: e199. 

[12] AIZPURUA-OLAIZOLA O, ELEZGARAI I, RICO-BARRIO I, et al. Targeting the endocannabinoid system: future therapeutic strategies [J]. Drug Discov Today, 2017, 22: 105-110. 

[13] HOWLETT A C, BARTH F, BONNER T I, et al. International union of pharmacology. XXVII. Classification of cannabinoid receptors [J]. Pharmacol Rev, 2002, 54: 161-202. 

[14] HERKENHAM M, LYNN A B, LITTLE M D, et al. Cannabinoid receptor localization in brain [J]. Proc Natl Acad Sci USA, 1990, 87: 1932-1936. 

[15] MUNRO S, THOMAS K L, ABU-SHAAR M. Molecular characterization of a peripheral receptor for cannabinoids [J]. Nature, 1993, 365: 61-65. 

[16] MALLIPEDDI S, JANERO D R, ZVONOK N, et al. Functional selectivity at G-protein coupled receptors: Advancing cannabinoid receptors as drug targets [J]. Biochem Pharmacol, 2017, 128: 1-11. 

[17] GLASS M, FELDER C C. Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors augments cAMP accumulation in striatal neurons: evidence for a Gs linkage to the CB1 receptor [J]. J Neurosci, 1997, 17: 5327-5333. 

[18] LAUCKNER J E, HILLE B, MACKIE K. The cannabinoid agonist WIN55,212-2 increases intracellular calcium via CB1 receptor coupling to Gq/11 G proteins [J]. Proc Natl Acad Sci USA, 2005, 102: 19144-19149.

 [19] DONVITO G, NASS S R, WILKERSON J L, et al. The endogenous cannabinoid system: a budding source of targets for treating inflammatory and neuropathic pain [J]. Neuropsychopharmacology, 2018, 43: 52-79. 

[20] HUA T, VEMURI K, PU M, et al. Crystal structure of the human cannabinoid receptor CB1 [J]. Cell, 2016, 167: 750-762. e14.

[21] SHAO Z, YIN J, CHAPMAN K, et al. High-resolution crystal structure of the human CB1 cannabinoid receptor [J]. Nature, 2016, 540: 602-606. 

[22] HURST D P, SCHMEISSER M, REGGIO P H. Endogenous lipid activated G protein-coupled receptors: emerging structural features from crystallography and molecular dynamics simulations [J]. Chem Phys Lipids, 2013, 169: 46-56. 

[23] SIM-SELLEY L J, GOFORTH P B, MBA M U, et al. Sphingosine-1- phosphate receptors mediate neuromodulatory functions in the CNS [J]. J Neurochem, 2009, 110: 1191-1202. 

[24] DE SAN ROMAN E G, MANUEL I, LEDENT C, et al. CB1 and LPA1 receptors relationship in the mouse central nervous system [J]. Front Mol Neurosci, 2019, 12: 223. 

[25] FAY J F, DUNHAM T D, FARRENS D L. Cysteine residues in the human cannabinoid receptor: only C257 and C264 are required for a functional receptor, and steric bulk at C386 impairs antagonist SR141716A binding [J]. Biochemistry, 2005, 44: 8757-8769.

 [26] HUA T, VEMURI K, NIKAS S P, et al. Crystal structures of agonistbound human cannabinoid receptor CB1 [J]. Nature, 2017, 547: 468-471. 

[27] KRISHNA KUMAR K, SHALEV-BENAMI M, ROBERTSON M J, et al. Structure of a signaling cannabinoid receptor 1-G protein complex [J]. Cell, 2019, 176: 448-458. e12. 

[28] HUA T, LI X, WU L, et al. Activation and signaling mechanism revealed by cannabinoid receptor-Gi complex structures [J]. Cell, 2020, 180(4): 655-665. e18. 

[29] LI X, HUA T, VEMURI K, et al. Crystal structure of the human cannabinoid receptor CB2 [J]. Cell, 2019, 176: 459-467. e13.

 [30] LUNN C A, REICH E P, FINE J S, et al. Biology and therapeutic potential of cannabinoid CB2 receptor inverse agonists [J]. Br J Pharmacol, 2008, 153: 226-239. 

[31] CONTINO M, CAPPARELLI E, COLABUFO N A, et al. Editorial: The CB2 cannabinoid system: A new strategy in neurodegenerative disorder and neuroinflammation [J]. Front Neurosci, 2017, 11: 196. doi: 10.3389/fnins.2017.00196. 

[32] XING C, ZHUANG Y, XU T H, et al. Cryo-EM structure of the human cannabinoid receptor CB2-Gi signaling complex [J]. Cell, 2020, 180: 645-654. e13. 

文章导航

/