高等植物光系统复合物结构生物学研究进展
Advances in structural biology of photosystem complexes in higher plants
Received date: 2021-04-25
Online published: 2021-06-13
苏小东, 李梅 . 高等植物光系统复合物结构生物学研究进展[J]. 自然杂志, 2021 , 43(3) : 165 -175 . DOI: 10.3969/j.issn.0253-9608.2021.03.002
[1] DEKKER J P, BOEKEMA E J. Supramolecular organization of thylakoid membrane proteins in green plants [J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2005, 1706: 12-39.
[2] BOEKEMA E J, VAN ROON H, VAN BREEMEN J F, et al. Supramolecular organization of photosystem II and its lightharvesting antenna in partially solubilized photosystem II membranes [J]. European Journal of Biochemistry, 1999, 266: 444- 452.
[3] KALE R, HEBERT A E, FRANKEL L K, et al. Amino acid oxidation of the D1 and D2 proteins by oxygen radicals during photoinhibition of photosystem II [J]. Proceedings of the National Academy of Sciences, 2017, 114: 2988-2993.
[4] ALBANESE P, MANFREDI M, MENEGHESSO A, et al. Dynamic reorganization of photosystem II supercomplexes in response to variations in light intensities [J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2016, 1857: 1651-1660.
[5] ROCHAIX J-D. Role of thylakoid protein kinases in photosynthetic acclimation [J]. Febs Letters, 2007, 581: 2768-2775.
[6] NELSON N, JUNGE W. Structure and energy transfer in photosystems of oxygenic photosynthesis [J]. Annual review of biochemistry, 2015, 84: 659-683.
[7] MUNEKAGE Y, HASHIMOTO M, MIYAKE C, et al. Cyclic electron flow around photosystem I is essential for photosynthesis [J]. Nature, 2004, 429: 579-582.
[8] DAINESE P, BASSI R. Subunit stoichiometry of the chloroplast photosystem II antenna system and aggregation state of the component chlorophyll a/b binding proteins [J]. Journal of Biological Chemistry, 1991, 266: 8136-8142.
[9] BOEKEMA E J, HANKAMER B, BALD D, et al. Supramolecular structure of the photosystem II complex from green plants and cyanobacteria [J]. Proceedings of the National Academy of Sciences, 1995, 92: 175-179.
[10] NIELD J, ORLOVA E V, MORRIS E P, et al. 3D map of the plant photosystem II supercomplex obtained by cryoelectron microscopy and single particle analysis [J]. Nature Structural Biology, 2000, 7: 44-47.
[11] NIELD J, BARBER J. Refinement of the structural model for the Photosystem II supercomplex of higher plants [J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2006, 1757: 353-361.
[12] ZOUNI A, WITT H-T, KERN J, et al. Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution [J]. Nature, 2001, 409: 739-743.
[13] UMENA Y, KAWAKAMI K, SHEN J-R, et al. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å [J]. Nature, 2011, 473: 55-60.
[14] WEI X, SU X, CAO P, et al. Structure of spinach photosystem II– LHCII supercomplex at 3.2 Å resolution [J]. Nature, 2016, 534: 69- 74.
[15] SHI L-X, SCHRÖDER W P. The low molecular mass subunits of the photosynthetic supracomplex, photosystem II [J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2004, 1608: 75-96.
[16] GARCÍA-CERDÁN J G, KOVÁCS L, TÓTH T, et al. The PsbW protein stabilizes the supramolecular organization of photosystem II in higher plants [J]. The Plant Journal, 2011, 65: 368-381.
[17] LIU Z, YAN H, WANG K, et al. Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution [J]. Nature, 2004, 428: 287-292.
[18] BALLOTTARI M, MOZZO M, CROCE R, et al. Occupancy and functional architecture of the pigment binding sites of photosystem II antenna complex Lhcb5 [J]. Journal of Biological Chemistry, 2009, 284: 8103-8113.
[19] RUBAN A V, WENTWORTH M, YAKUSHEVSKA A E, et al. Plants lacking the main light-harvesting complex retain photosystem II macro-organization [J]. Nature, 2003, 421: 648-652.
[20] PAN X, LI M, WAN T, et al. Structural insights into energy regulation of light-harvesting complex CP29 from spinach [J]. Nature Structural & Molecular biology, 2011, 18: 309-315.
[21] YAKUSHEVSKA A E, JENSEN P E, KEEGSTRA W, et al. Supermolecular organization of photosystem II and its associated light-harvesting antenna in Arabidopsis thaliana [J]. European Journal of Biochemistry 2001, 268: 6020-6028.
[22] CAFFARRI S, KOUŘIL R, KEREÏCHE S, et al. Functional architecture of higher plant photosystem II supercomplexes [J]. The EMBO Journal, 2009, 28: 3052-3063.
[23] VAN BEZOUWEN L S, CAFFARRI S, KALE R S, et al. Subunit and chlorophyll organization of the plant photosystem II supercomplex [J]. Nature Plants, 2017, 3: 1-11.
[24] SU X, MA J, WEI X, et al. Structure and assembly mechanism of plant C2S2M2-type PSII-LHCII supercomplex [J]. Science, 2017, 357: 815-820.
[25] PASSARINI F, WIENTJES E, HIENERWADEL R, et al. Molecular basis of light harvesting and photoprotection in CP24: unique features of the most recent antenna complex [J]. Journal of Biological Chemistry, 2009, 284: 29536-29546.
[26] BEN-SHEM A, FROLOW F, NELSON N. Crystal structure of plant photosystem I [J]. Nature, 2003, 426: 630-635.
[27] AMUNTS A, DRORY O, NELSON N. The structure of a plant photosystem I supercomplex at 3.4 Å resolution [J]. Nature, 2007, 447: 58-63.
[28] QIN X, SUGA M, KUANG T, et al. Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex [J]. Science, 2015, 348: 989-995.
[29] MAZOR Y, BOROVIKOVA A, NELSON N. The structure of plant photosystem I super-complex at 2.8 Å resolution [J]. eLife, 2015, 4: e07433.
[30] WANG J, YU L J, WANG W, et al. Structure of plant photosystem I-light harvesting complex I supercomplex at 2.4 Å resolution [J]. Journal of Integrative Plant Biology, 2021. DOI: 10.1111/jipb.13095.
[31] MAZOR Y, BOROVIKOVA A, CASPY I, et al. Structure of the plant photosystem I supercomplex at 2.6 Å resolution [J]. Nature Plants, 2017, 3: 1-9.
[32] WIENTJES E, OOSTERGETEL G T, JANSSON S, et al. The role of Lhca complexes in the supramolecular organization of higher plant photosystem I [J]. Journal of Biological Chemistry, 2009, 284:7803-7810.
[33] KNOETZEL J, SVENDSEN I, SIMPSON D J. Identification of the photosystem I antenna polypeptides in barley: Isolation of three pigment-binding antenna complexes [J]. European Journal of Biochemistry, 1992, 206: 209-215.
[34] CROCE R, DORRA D, HOLZWARTH A R, et al. Fluorescence decay and spectral evolution in intact photosystem I of higher plants [J]. Biochemistry, 2000, 39: 6341-6348.
[35] GOBETS B, VAN GRONDELLE R. Energy transfer and trapping in photosystem I [J]. Biochimica et Biophysica Acta (BBA)- Bioenergetics, 2001, 1507: 80-99.
[36] TIWARI A, MAMEDOV F, GRIECO M, et al. Photodamage of iron-sulphur clusters in photosystem I induces non-photochemical energy dissipation [J]. Nature Plants, 2016, 2: 1-9.
[37] MURATA N. Control of excitation transfer in photosynthesis I. Light-induced change of chlorophyll a fluoresence in Porphyridium cruentum [J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1969, 172: 242-251.
[38] ROCHAIX J-D, LEMEILLE S, SHAPIGUZOV A, et al. Protein kinases and phosphatases involved in the acclimation of the photosynthetic apparatus to a changing light environment [J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367: 3466-3474.
[39] GOLDSCHMIDT-CLERMONT M, BASSI R. Sharing light between two photosystems: mechanism of state transitions [J]. Current Opinion in Plant Biology, 2015, 25: 71-78.
[40] KOUŘIL R, ZYGADLO A, ARTENI A A, et al. Structural characterization of a complex of photosystem I and light-harvesting complex II of Arabidopsis thaliana [J]. Biochemistry, 2005, 44: 10935-10940.
[41] GALKA P, SANTABARBARA S, KHUONG T T H, et al. Functional analyses of the plant photosystem I-light-harvesting complex II supercomplex reveal that light-harvesting complex II loosely bound to photosystem II is a very efficient antenna for photosystem I in state II [J]. The Plant Cell, 2012, 24: 2963-2978.
[42] PAN X, MA J, SU X, et al. Structure of the maize photosystem I supercomplex with light-harvesting complexes I and II [J]. Science, 2018, 360: 1109-1113.
[43] AUSTIN J R, STAEHELIN L A. Three-dimensional architecture of grana and stroma thylakoids of higher plants as determined by electron tomography [J]. Plant Physiology, 2011, 155: 1601-1611. [
44] WIENTJES E, VAN STOKKUM I H, VAN AMERONGEN H, et al. The role of the individual Lhcas in photosystem I excitation energy trapping [J]. Biophysical Journal, 2011, 101: 745-754.
[45] YADAV K S, SEMCHONOK D A, NOSEK L, et al. Supercomplexes of plant photosystem I with cytochrome b6f, light-harvesting complex II and NDH [J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2017, 1858: 12-20.
[46] BOS I, BLAND K M, TIAN L, et al. Multiple LHCII antennae can transfer energy efficiently to a single photosystem I [J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2017, 1858: 371-378.
[47] CREPIN A, KUČEROVÁZ, KOSTA A, et al. Isolation and characterization of a large photosystem I-light-harvesting complex II supercomplex with an additional Lhca1–a4 dimer in Arabidopsis [J]. The Plant Journal, 2020, 102: 398-409.
[48] ALBANESE P, NIELD J, TABARES J A M, et al. Isolation of novel PSII-LHCII megacomplexes from pea plants characterized by a combination of proteomics and electron microscopy [J]. Photosynthesis Research, 2016, 130: 19-31.
[49] BOEKEMA E J, VAN ROON H, CALKOEN F, et al. Multiple types of association of photosystem II and its light-harvesting antenna in partially solubilized photosystem II membranes [J]. Biochemistry, 1999, 38: 2233-2239.
[50] FAN M, LI M, LIU Z, et al. Crystal structures of the PsbS protein essential for photoprotection in plants [J]. Nature Structural & Molecular Biology, 2015, 22: 729-735.
[51] ZHANG C, CHEN C, DONG H, et al. A synthetic Mn4Ca-cluster mimicking the oxygen-evolving center of photosynthesis [J]. Science, 2015, 348: 690-693.
[52] KROMDIJK J, GŁOWACKA K, LEONELLI L, et al. Improving photosynthesis and crop productivity by accelerating recovery from photoprotection [J]. Science, 2016, 354: 857-861.
[53] SHEN B R, WANG L M, LIN X L, et al. Engineering a new chloroplastic photorespiratory bypass to increase photosynthetic efficiency and productivity in rice [J]. Molecular Plant, 2019, 12: 199-214.
[54] SOUTH P F, CAVANAGH A P, LIU H W, et al. Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field [J]. Science, 2019, 363: eaat9077.
/
〈 |
|
〉 |