专题综述

高等植物光系统复合物结构生物学研究进展

展开
  • 中国科学院生物物理研究所 生物大分子国家重点实验室,北京 100101

收稿日期: 2021-04-25

  网络出版日期: 2021-06-13

Advances in structural biology of photosystem complexes in higher plants

Expand
  • National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China

Received date: 2021-04-25

  Online published: 2021-06-13

摘要

光合作用过程中,植物通过位于叶绿体中类囊体膜上的光系统II和光系统I及其他蛋白复合物将吸收的太阳能转化为化学能,并释放氧气。两个光系统均是由各自的核心复合物和外周捕光天线组成的多亚基膜蛋白色素复合体,并参与植物在不同光照环境的适应调节过程,了解这些复合物的结构有助于对光合作用分子机制的深入理解。文章系统总结了近期高等植物光系统II和光系统I及相关蛋白复合物的结构生物学研究进展。

本文引用格式

苏小东, 李梅 . 高等植物光系统复合物结构生物学研究进展[J]. 自然杂志, 2021 , 43(3) : 165 -175 . DOI: 10.3969/j.issn.0253-9608.2021.03.002

Abstract

 Plants convert absorbed solar energy into chemical energy and release oxygen through photosynthesis, a process performed by several protein supercomplexes, including photosystem II and photosystem I. Both photosystems are membrane-embedded proteinpigment supercomplexes, consisting of the core complex and the peripheral antennae system. The two photosystems show dynamic structural feature that contributes to the adaptation and acclimation of plants under different light conditions. Structural information of these supercomplexes provides the basis for deeper understanding the molecular mechanism of photosynthesis. In this paper, we summarized the recent research progress on the structural analysis of photosystems II and I, and related protein complexes from higher plants.

参考文献

[1] DEKKER J P, BOEKEMA E J. Supramolecular organization of thylakoid membrane proteins in green plants [J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2005, 1706: 12-39.

[2] BOEKEMA E J, VAN ROON H, VAN BREEMEN J F, et al. Supramolecular organization of photosystem II and its lightharvesting antenna in partially solubilized photosystem II membranes [J]. European Journal of Biochemistry, 1999, 266: 444- 452. 

[3] KALE R, HEBERT A E, FRANKEL L K, et al. Amino acid oxidation of the D1 and D2 proteins by oxygen radicals during photoinhibition of photosystem II [J]. Proceedings of the National Academy of Sciences, 2017, 114: 2988-2993.

[4] ALBANESE P, MANFREDI M, MENEGHESSO A, et al. Dynamic reorganization of photosystem II supercomplexes in response to variations in light intensities [J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2016, 1857: 1651-1660. 

[5] ROCHAIX J-D. Role of thylakoid protein kinases in photosynthetic acclimation [J]. Febs Letters, 2007, 581: 2768-2775. 

[6] NELSON N, JUNGE W. Structure and energy transfer in photosystems of oxygenic photosynthesis [J]. Annual review of biochemistry, 2015, 84: 659-683.

[7] MUNEKAGE Y, HASHIMOTO M, MIYAKE C, et al. Cyclic electron flow around photosystem I is essential for photosynthesis [J]. Nature, 2004, 429: 579-582. 

[8] DAINESE P, BASSI R. Subunit stoichiometry of the chloroplast photosystem II antenna system and aggregation state of the component chlorophyll a/b binding proteins [J]. Journal of Biological Chemistry, 1991, 266: 8136-8142. 

[9] BOEKEMA E J, HANKAMER B, BALD D, et al. Supramolecular structure of the photosystem II complex from green plants and cyanobacteria [J]. Proceedings of the National Academy of Sciences, 1995, 92: 175-179. 

[10] NIELD J, ORLOVA E V, MORRIS E P, et al. 3D map of the plant photosystem II supercomplex obtained by cryoelectron microscopy and single particle analysis [J]. Nature Structural Biology, 2000, 7: 44-47. 

[11] NIELD J, BARBER J. Refinement of the structural model for the Photosystem II supercomplex of higher plants [J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2006, 1757: 353-361. 

[12] ZOUNI A, WITT H-T, KERN J, et al. Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution [J]. Nature, 2001, 409: 739-743. 

[13] UMENA Y, KAWAKAMI K, SHEN J-R, et al. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å [J]. Nature, 2011, 473: 55-60. 

[14] WEI X, SU X, CAO P, et al. Structure of spinach photosystem II– LHCII supercomplex at 3.2 Å resolution [J]. Nature, 2016, 534: 69- 74. 

[15] SHI L-X, SCHRÖDER W P. The low molecular mass subunits of the photosynthetic supracomplex, photosystem II [J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2004, 1608: 75-96. 

[16] GARCÍA-CERDÁN J G, KOVÁCS L, TÓTH T, et al. The PsbW protein stabilizes the supramolecular organization of photosystem II in higher plants [J]. The Plant Journal, 2011, 65: 368-381.

[17] LIU Z, YAN H, WANG K, et al. Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution [J]. Nature, 2004, 428: 287-292. 

[18] BALLOTTARI M, MOZZO M, CROCE R, et al. Occupancy and functional architecture of the pigment binding sites of photosystem II antenna complex Lhcb5 [J]. Journal of Biological Chemistry, 2009, 284: 8103-8113. 

[19] RUBAN A V, WENTWORTH M, YAKUSHEVSKA A E, et al. Plants lacking the main light-harvesting complex retain photosystem II macro-organization [J]. Nature, 2003, 421: 648-652. 

[20] PAN X, LI M, WAN T, et al. Structural insights into energy regulation of light-harvesting complex CP29 from spinach [J]. Nature Structural & Molecular biology, 2011, 18: 309-315. 

[21] YAKUSHEVSKA A E, JENSEN P E, KEEGSTRA W, et al. Supermolecular organization of photosystem II and its associated light-harvesting antenna in Arabidopsis thaliana [J]. European Journal of Biochemistry 2001, 268: 6020-6028. 

[22] CAFFARRI S, KOUŘIL R, KEREÏCHE S, et al. Functional architecture of higher plant photosystem II supercomplexes [J]. The EMBO Journal, 2009, 28: 3052-3063. 

[23] VAN BEZOUWEN L S, CAFFARRI S, KALE R S, et al. Subunit and chlorophyll organization of the plant photosystem II supercomplex [J]. Nature Plants, 2017, 3: 1-11. 

[24] SU X, MA J, WEI X, et al. Structure and assembly mechanism of plant C2S2M2-type PSII-LHCII supercomplex [J]. Science, 2017, 357: 815-820. 

[25] PASSARINI F, WIENTJES E, HIENERWADEL R, et al. Molecular basis of light harvesting and photoprotection in CP24: unique features of the most recent antenna complex [J]. Journal of Biological Chemistry, 2009, 284: 29536-29546. 

[26] BEN-SHEM A, FROLOW F, NELSON N. Crystal structure of plant photosystem I [J]. Nature, 2003, 426: 630-635. 

[27] AMUNTS A, DRORY O, NELSON N. The structure of a plant photosystem I supercomplex at 3.4 Å resolution [J]. Nature, 2007, 447: 58-63. 

[28] QIN X, SUGA M, KUANG T, et al. Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex [J]. Science, 2015, 348: 989-995. 

[29] MAZOR Y, BOROVIKOVA A, NELSON N. The structure of plant photosystem I super-complex at 2.8 Å resolution [J]. eLife, 2015, 4: e07433. 

[30] WANG J, YU L J, WANG W, et al. Structure of plant photosystem I-light harvesting complex I supercomplex at 2.4 Å resolution [J]. Journal of Integrative Plant Biology, 2021. DOI: 10.1111/jipb.13095. 

[31] MAZOR Y, BOROVIKOVA A, CASPY I, et al. Structure of the plant photosystem I supercomplex at 2.6 Å resolution [J]. Nature Plants, 2017, 3: 1-9. 

[32] WIENTJES E, OOSTERGETEL G T, JANSSON S, et al. The role of Lhca complexes in the supramolecular organization of higher plant photosystem I [J]. Journal of Biological Chemistry, 2009, 284:7803-7810. 

[33] KNOETZEL J, SVENDSEN I, SIMPSON D J. Identification of the photosystem I antenna polypeptides in barley: Isolation of three pigment-binding antenna complexes [J]. European Journal of Biochemistry, 1992, 206: 209-215. 

[34] CROCE R, DORRA D, HOLZWARTH A R, et al. Fluorescence decay and spectral evolution in intact photosystem I of higher plants [J]. Biochemistry, 2000, 39: 6341-6348. 

[35] GOBETS B, VAN GRONDELLE R. Energy transfer and trapping in photosystem I [J]. Biochimica et Biophysica Acta (BBA)- Bioenergetics, 2001, 1507: 80-99. 

[36] TIWARI A, MAMEDOV F, GRIECO M, et al. Photodamage of iron-sulphur clusters in photosystem I induces non-photochemical energy dissipation [J]. Nature Plants, 2016, 2: 1-9. 

[37] MURATA N. Control of excitation transfer in photosynthesis I. Light-induced change of chlorophyll a fluoresence in Porphyridium cruentum [J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1969, 172: 242-251. 

[38] ROCHAIX J-D, LEMEILLE S, SHAPIGUZOV A, et al. Protein kinases and phosphatases involved in the acclimation of the photosynthetic apparatus to a changing light environment [J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367: 3466-3474. 

[39] GOLDSCHMIDT-CLERMONT M, BASSI R. Sharing light between two photosystems: mechanism of state transitions [J]. Current Opinion in Plant Biology, 2015, 25: 71-78. 

[40] KOUŘIL R, ZYGADLO A, ARTENI A A, et al. Structural characterization of a complex of photosystem I and light-harvesting complex II of Arabidopsis thaliana [J]. Biochemistry, 2005, 44: 10935-10940. 

[41] GALKA P, SANTABARBARA S, KHUONG T T H, et al. Functional analyses of the plant photosystem I-light-harvesting complex II supercomplex reveal that light-harvesting complex II loosely bound to photosystem II is a very efficient antenna for photosystem I in state II [J]. The Plant Cell, 2012, 24: 2963-2978. 

[42] PAN X, MA J, SU X, et al. Structure of the maize photosystem I supercomplex with light-harvesting complexes I and II [J]. Science, 2018, 360: 1109-1113. 

[43] AUSTIN J R, STAEHELIN L A. Three-dimensional architecture of grana and stroma thylakoids of higher plants as determined by electron tomography [J]. Plant Physiology, 2011, 155: 1601-1611. [

44] WIENTJES E, VAN STOKKUM I H, VAN AMERONGEN H, et al. The role of the individual Lhcas in photosystem I excitation energy trapping [J]. Biophysical Journal, 2011, 101: 745-754. 

[45] YADAV K S, SEMCHONOK D A, NOSEK L, et al. Supercomplexes of plant photosystem I with cytochrome b6f, light-harvesting complex II and NDH [J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2017, 1858: 12-20. 

[46] BOS I, BLAND K M, TIAN L, et al. Multiple LHCII antennae can transfer energy efficiently to a single photosystem I [J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2017, 1858: 371-378. 

[47] CREPIN A, KUČEROVÁZ, KOSTA A, et al. Isolation and characterization of a large photosystem I-light-harvesting complex II supercomplex with an additional Lhca1–a4 dimer in Arabidopsis [J]. The Plant Journal, 2020, 102: 398-409. 

[48] ALBANESE P, NIELD J, TABARES J A M, et al. Isolation of novel PSII-LHCII megacomplexes from pea plants characterized by a combination of proteomics and electron microscopy [J]. Photosynthesis Research, 2016, 130: 19-31. 

[49] BOEKEMA E J, VAN ROON H, CALKOEN F, et al. Multiple types of association of photosystem II and its light-harvesting antenna in partially solubilized photosystem II membranes [J]. Biochemistry, 1999, 38: 2233-2239. 

[50] FAN M, LI M, LIU Z, et al. Crystal structures of the PsbS protein essential for photoprotection in plants [J]. Nature Structural & Molecular Biology, 2015, 22: 729-735. 

[51] ZHANG C, CHEN C, DONG H, et al. A synthetic Mn4Ca-cluster mimicking the oxygen-evolving center of photosynthesis [J]. Science, 2015, 348: 690-693. 

[52] KROMDIJK J, GŁOWACKA K, LEONELLI L, et al. Improving photosynthesis and crop productivity by accelerating recovery from photoprotection [J]. Science, 2016, 354: 857-861. 

[53] SHEN B R, WANG L M, LIN X L, et al. Engineering a new chloroplastic photorespiratory bypass to increase photosynthetic efficiency and productivity in rice [J]. Molecular Plant, 2019, 12: 199-214. 

[54] SOUTH P F, CAVANAGH A P, LIU H W, et al. Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field [J]. Science, 2019, 363: eaat9077.


文章导航

/