专题综述

红藻藻胆体的结构及关键色素分析

展开
  • ①南方科技大学 生命科学学院,深圳 518055;②清华大学 生命科学学院,北京 100084

收稿日期: 2021-04-06

  网络出版日期: 2021-06-13

Structures and key bilins of red algal phycobilisomes

Expand
  • ①School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; ②School of Life Sciences, Tsinghua University, Beijing 100084, China

Received date: 2021-04-06

  Online published: 2021-06-13

摘要

藻胆体是红藻和蓝藻中的大型水溶性捕光复合体,能吸收较宽范围波长的可见光,能量传递效率高于95%。目前解析的高分辨率藻胆体来自红藻Griffithsia pacifica(太平洋凋毛藻)和Porphyridium purpureum(紫球藻),在这两个物种中获得了藻胆体完整的蛋白结构,确定了所有连接蛋白的结构和分布,并且在Porphyridium purpureum藻胆体的结构中发现连接 蛋白具有调节藻胆蛋白色素能量状态的作用。文章将针对藻胆体的整体结构和关键色素的微环境进行分析。

本文引用格式

肖亚男, 马建飞, 游鑫, 隋森芳 . 红藻藻胆体的结构及关键色素分析[J]. 自然杂志, 2021 , 43(3) : 176 -188 . DOI: 10.3969/j.issn.0253-9608.2021.03.003

Abstract

Phycobilisomes are large water-soluble light-harvesting complexes in red algae and cyanobacteria, with the energy transfer efficiency higher than 95%. The high-resolution structures of phycobilisomes resolved so far are from the red algae Griffithsia pacifica and Porphyridium purpureum, providing important information of the overall structures of the phycobilisomes, especially the structures and functions of linker proteins. Furthermore, linker proteins regulate the energy state of chromophores in Porphyridium purpureum phycobilisome. In this review, we analyze the overall structures of red algal phycobilisomes and the microenvironments of key chromophores.

参考文献

[1] CROCE R, VAN AMERONGEN H. Natural strategies for photosynthetic light harvesting [J]. Nature Chemical Biology, 2014, 10: 492-501. 

[2] 匡廷云, 李良璧, 汪力. 光合作用原初光能转化过程的原理与调控[M]. 南京: 江苏科学技术出版社, 2003: 3-4. 

[3] GREEN B R. What happened to the phycobilisome? [J]. Biomolecules, 2019, 9: 748. 

[4] MACCOLL R. Cyanobacterial phycobilisomes [J]. Journal of Structural Biology, 1998, 124: 311-334. 

[5] ADIR N. Elucidation of the molecular structures of components of the phycobilisome: reconstructing a giant [J]. Photosynthesis Research, 2005, 85: 15-32. 

[6] SIDLER W A. Phycobilisome and phycobiliprotein structures [M]// BRYANT D A(ed). The Molecular Biology of Cyanobacteria. The Netherlands: Kluwer Academic Publishers, 1994: 139-216. 

[7] BRYANT D A, CANNIFFE D P. How nature designs lightharvesting antenna systems: design principles and functional realization in chlorophototrophic prokaryotes [J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51: 033001. 

[8] ZHANG J, MA J, LIU D, et al. Structure of phycobilisome from the red alga Griffithsia pacifica [J]. Nature, 2017, 551: 57-63. 

[9] WATANABE M, IKEUCHI M. Phycobilisome: architecture of a light-harvesting supercomplex [J]. Photosynthesis Research, 2013, 116: 265-276. 

[10] SAER R G, BLANKENSHIP R E. Light harvesting in phototrophic bacteria: structure and function [J]. The Biochemical Journal, 2017, 474: 2107-2131. 

[11] MULLINEAUX C W. Phycobilisome-reaction centre interaction in cyanobacteria [J]. Photosynthesis Research, 2008, 95: 175-182. 

[12] LI W, SU H N, PU Y, et al. Phycobiliproteins: molecular structure, production, applications, and prospects [J]. Biotechnology Advances, 2019, 37: 340-353. 

[13] GANTT E, CONTI S F. The ultrastructure of Porphyridium cruentum [J]. The Journal of Cell Biology, 1965, 26: 365-381. 

[14] GANTT E, CONTI S F. Granules associated with the chloroplast lamellae of Porphyridium cruentum [J]. The Journal of Cell Biology, 1966, 29: 423-434. 

[15] GANTT E, LIPSCHULTZ C A. Phycobilisomes of Porphyridium cruentum. I. Isolation [J]. The Journal of Cell Biology, 1972, 54: 187313-324. 

[16] ARTENI A A, AJLANI G, BOEKEMA E J. Structural organisation of phycobilisomes from Synechocystis sp. strain PCC6803 and their interaction with the membrane [J]. Biochimica et Biophysica Acta, 2009, 1787: 272-279. 

[17] ARTENI A A, LIU L N, AARTSMA T J, et al. Structure and organization of phycobilisomes on membranes of the red alga Porphyridium cruentum [J]. Photosynthesis Research, 2008, 95: 169-174. 

[18] GANTT E, LIPSCHULTZ C A. Structure and phycobiliprotein composition of phycobilisomes from Griffithsia pacifica (Rhodophyceae) [J]. Journal of Phycology, 1980, 16: 394-398. 

[19] GUGLIELMI G, COHEN-BAZIRE G, BRYANT D A. The structure of Gloeobacter violaceus and its phycobilisomes [J]. Archives of Microbiology, 1981, 129: 181-189. 

[20] HU Q, MARQUARDT J, IWASAKI I, et al. Molecular structure, localization and function of biliproteins in the chlorophyll a/ d containing oxygenic photosynthetic prokaryote Acaryochloris marina [J]. Biochimica et Biophysica Acta, 1999, 1412: 250-261. 

[21] MARQUARDT J, SENGER H, MIYASHITA H, et al. Isolation and characterization of biliprotein aggregates from Acaryochloris marina, a prochloron-like prokaryote containing mainly chlorophyll d [J]. FEBS Letters, 1997, 410: 428-432. 

[22] 林瀚智. 藻胆体结构多样性研究及黄海绿潮早期形成过程分析 [D]. 青岛: 中国科学院研究生院(海洋研究所), 2012.

[23] JIANG T, ZHANG J P, CHANG W R, et al. Crystal structure of R-phycocyanin and possible energy transfer pathways in the phycobilisome [J]. Biophysical Journal, 2001, 81(2): 1171-1179. 

[24] JIANG T, ZHANG J, LIANG D. Structure and function of chromophores in R-phycoerythrin at 1.9 Å resolution [J]. Proteins, 1999, 34(2): 224-231. 

[25] GAO X, ZHANG N, WEI T D, et al. Crystal structure of the N-terminal domain of linker L(R) and the assembly of cyanobacterial phycobilisome rods [J]. Molecular Microbiology, 2011, 82: 698-705. 

[26] YI Z W, HUANG H, KUANG T Y, et al. Three-dimensional architecture of phycobilisomes from Nostoc flagelliforme revealed by single particle electron microscopy [J]. FEBS Letters, 2005, 579: 3569-3573. 

[27] CHANG L, LIU X, LI Y, et al. Structural organization of an intact phycobilisome and its association with photosystem II [J]. Cell Research, 2015, 25: 726-737. 

[28] MA J, YOU X, SUN S, et al. Structural basis of energy transfer in Porphyridium purpureum phycobilisome [J]. Nature, 2020, 579: 146-151. 

[29] SCHIRMER T, HUBER R, SCHNEIDER M, et al. Crystal structure analysis and refinement at 2.5 Å of hexameric C-phycocyanin from the cyanobacterium Agmenellum quadruplicatum. The molecular model and its implications for light-harvesting [J]. Journal of Molecular Biology, 1986, 188: 651-676.

[30] MACCOLL R. Allophycocyanin and energy transfer [J]. Biochimica et Biophysica Acta, 2004, 1657: 73-81. 

[31] GROSSMAN A R, SCHAEFER M R, CHIANG G G, et al. The phycobilisome, a light-harvesting complex responsive to environmental conditions [J]. Microbiological Reviews, 1993, 57: 725-749. 

[32] LI H, SHERMAN L A. Characterization of Synechocystis sp. strain PCC 6803 and deltanbl mutants under nitrogen-deficient conditions [J]. Archives of Microbiology, 2002, 178: 256-266. 

[33] GLAZER A N. Phycobilisomes: structure and dynamics [J]. Annual Review of Microbiology, 1982, 36: 173-198. 

[34] SIX C, THOMAS J C, THION L, et al. Two novel phycoerythrinassociated linker proteins in the marine cyanobacterium Synechococcus sp. strain WH8102 [J]. Journal of Bacteriology, 2005, 187: 1685-1694. 

[35] ANDERSON L K, TOOLE C M. A model for early events in the assembly pathway of cyanobacterial phycobilisomes [J]. Molecular Microbiology, 1998, 30: 467-474. 

[36] SCHIRMER T, BODE W, HUBER R. Refined three-dimensional structures of two cyanobacterial C-phycocyanins at 2.1 and 2.5 Å resolution. A common principle of phycobilin-protein interaction [J]. Journal of Molecular Biology, 1987, 196: 677-695. 

[37] REUTER W, WIEGAND G, HUBER R, et al. Structural analysis at 2.2 Å of orthorhombic crystals presents the asymmetry of the allophycocyanin-linker complex, AP. LC7. 8, from phycobilisomes of Mastigocladus laminosus [J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96: 1363-1368. 

[38] GAO X, WEI T D, ZHANG N, et al. Molecular insights into the terminal energy acceptor in cyanobacterial phycobilisome [J]. Molecular Microbiology, 2012, 85(5): 907-915. 

[39] JALLET D, GWIZDALA M, KIRILOVSKY D. ApcD, ApcF and ApcE are not required for the orange carotenoid protein related phycobilisome fluorescence quenching in the cyanobacterium Synechocystis PCC 6803 [J]. Biochimica et Biophysica Acta, 2012, 1817: 1418-1427. 

[40] GUAN X, QIN S, ZHAO F, et al. Phycobilisomes linker family in cyanobacterial genomes: divergence and evolution [J]. International Journal of Biological Sciences, 2007, 3: 434-445. 

[41] MCGREGOR A, KLARTAG M, DAVID L, et al. Allophycocyanin trimer stability and functionality are primarily due to polar enhanced hydrophobicity of the phycocyanobilin binding pocket [J]. Journal of Molecular Biology, 2008, 384: 406-421. 

[42] LIU L N, CHEN X L, ZHANG Y Z, et al. Characterization, structure and function of linker polypeptides in phycobilisomes of cyanobacteria and red algae: an overview [J]. Biochimica et Biophysica Acta, 2005, 1708: 133-142. 

[43] PARBEL A, SCHEER H. Model for the phycobilisome rod with interlocking disks based on domain-weighted linker-polypeptide sequence homologies of Mastigocladus laminosus [J]. International Journal of Photoenergy, 2000, 2: 31-40. 

[44] ONISHI A, AIKAWA S, KONDO A, et al. Energy transfer in Anabaena variabilis filaments under nitrogen depletion, studied by time-resolved fluorescence [J]. Photosynthesis Research, 2015, 125: 191-199. 

[45] FÖRSTER T. Zwischenmolecculare energiewanderung und fluoreszenz [J]. Annals of Physics, 1948, 2: 55-75. 

[46] FÖRSTER T. Transfer mechanisms of electronic excitation energy [J]. Radiation Research Supplement, 1960, 2: 326-339. [47] FÖRSTER T. Delocalized excitation and excitation transfer [M]// SINANOGLU O. Modern Quantum Chemistry, Istanbul Lectures. New York: Academic Press, 1965: 93-137. 

[48] SINNOKROT M O, VALEEV E F, SHERRILL C D. Estimates of the ab initio limit for pi-pi interactions: the benzene dimer [J]. Journal of the American Chemical Society, 2002, 124(36): 10887- 10893. 

[49] ANIGHORO A. Underappreciated chemical interactions in proteinligand complexes [J]. Methods in Molecular Biology, 2020, 2114: 75-86. 

[50] MCLEAN T M, TELFER S G, ELLIOTT A B, et al. Molecular excitons in a copper azadipyrrin complex [J]. Dalton Transactions, 2014, 43(47): 17746-17753. 

[51] ASHBY M K, MULLINEAUX C W. The role of ApcD and ApcF in energy transfer from phycobilisomes to PSI and PSII in a cyanobacterium [J]. Photosynthesis Research, 1999, 61: 169-179. 

[52] CALZADILLA P I, MUZZOPAPPA F, SETIF D, et al. Different roles for ApcD and ApcF in Synechococcus elongatus and Synechocystis sp. PCC 6803 phycobilisomes [J]. Biochimica et Biophysica Acta Bioenergetics, 2019, 1860(6): 488-498. 

[53] KUZMINOV F I, BOLYCHEVTSEVA Y V, ELANSKAYA I V, et al. Effect of APCD and APCF subunits depletion on phycobilisome fluorescence of the cyanobacterium Synechocystis PCC 6803 [J]. Journal of Photochemistry and Photobiology B: Biology, 2014, 133: 153-160. 

[54] DONG C, TANG A, ZHAO J, et al. ApcD is necessary for efficient energy transfer from phycobilisomes to photosystem I and helps to prevent photoinhibition in the cyanobacterium Synechococcus sp. PCC 7002 [J]. Biochimica et Biophysica Acta, 2009, 1787(9): 1122-1128. 

[55] GANTT E. Structure and function of phycobilisomes: light harvesting pigment complexes in red and blue-green algae [J]. International Review of Cytology, 1980, 66: 45-80. 

[56] LIU H, ZHANG, H, NIEDZWIEDZKI D M, et al. Phycobilisomes supply excitations to both photosystems in a megacomplex in cyanobacteria [J]. Science, 2013, 342: 1104-1107. 

[57] WATANABE M, SEMCHONOK D A, WEBBER-BIRUNGI M T, et al. Attachment of phycobilisomes in an antenna-photosystem I supercomplex of cyanobacteria [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(7): 2512-2517. 

[58] BARBER J. Photosynthetic energy conversion: natural and artificial [J]. Chemical Society Reviews, 2009, 38(1): 185-196. 

[59] BARBER J, TRAN P D. From natural to artificial photosynthesis [J]. Journal of the Royal Society, 2013, 10(81): 20120984. 

[60] O'REGAN B C, GRÄTZEL M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature, 1991, 353(6346): 737-740.

文章导航

/