红藻藻胆体的结构及关键色素分析
Structures and key bilins of red algal phycobilisomes
Received date: 2021-04-06
Online published: 2021-06-13
肖亚男, 马建飞, 游鑫, 隋森芳 . 红藻藻胆体的结构及关键色素分析[J]. 自然杂志, 2021 , 43(3) : 176 -188 . DOI: 10.3969/j.issn.0253-9608.2021.03.003
[1] CROCE R, VAN AMERONGEN H. Natural strategies for photosynthetic light harvesting [J]. Nature Chemical Biology, 2014, 10: 492-501.
[2] 匡廷云, 李良璧, 汪力. 光合作用原初光能转化过程的原理与调控[M]. 南京: 江苏科学技术出版社, 2003: 3-4.
[3] GREEN B R. What happened to the phycobilisome? [J]. Biomolecules, 2019, 9: 748.
[4] MACCOLL R. Cyanobacterial phycobilisomes [J]. Journal of Structural Biology, 1998, 124: 311-334.
[5] ADIR N. Elucidation of the molecular structures of components of the phycobilisome: reconstructing a giant [J]. Photosynthesis Research, 2005, 85: 15-32.
[6] SIDLER W A. Phycobilisome and phycobiliprotein structures [M]// BRYANT D A(ed). The Molecular Biology of Cyanobacteria. The Netherlands: Kluwer Academic Publishers, 1994: 139-216.
[7] BRYANT D A, CANNIFFE D P. How nature designs lightharvesting antenna systems: design principles and functional realization in chlorophototrophic prokaryotes [J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51: 033001.
[8] ZHANG J, MA J, LIU D, et al. Structure of phycobilisome from the red alga Griffithsia pacifica [J]. Nature, 2017, 551: 57-63.
[9] WATANABE M, IKEUCHI M. Phycobilisome: architecture of a light-harvesting supercomplex [J]. Photosynthesis Research, 2013, 116: 265-276.
[10] SAER R G, BLANKENSHIP R E. Light harvesting in phototrophic bacteria: structure and function [J]. The Biochemical Journal, 2017, 474: 2107-2131.
[11] MULLINEAUX C W. Phycobilisome-reaction centre interaction in cyanobacteria [J]. Photosynthesis Research, 2008, 95: 175-182.
[12] LI W, SU H N, PU Y, et al. Phycobiliproteins: molecular structure, production, applications, and prospects [J]. Biotechnology Advances, 2019, 37: 340-353.
[13] GANTT E, CONTI S F. The ultrastructure of Porphyridium cruentum [J]. The Journal of Cell Biology, 1965, 26: 365-381.
[14] GANTT E, CONTI S F. Granules associated with the chloroplast lamellae of Porphyridium cruentum [J]. The Journal of Cell Biology, 1966, 29: 423-434.
[15] GANTT E, LIPSCHULTZ C A. Phycobilisomes of Porphyridium cruentum. I. Isolation [J]. The Journal of Cell Biology, 1972, 54: 187: 313-324.
[16] ARTENI A A, AJLANI G, BOEKEMA E J. Structural organisation of phycobilisomes from Synechocystis sp. strain PCC6803 and their interaction with the membrane [J]. Biochimica et Biophysica Acta, 2009, 1787: 272-279.
[17] ARTENI A A, LIU L N, AARTSMA T J, et al. Structure and organization of phycobilisomes on membranes of the red alga Porphyridium cruentum [J]. Photosynthesis Research, 2008, 95: 169-174.
[18] GANTT E, LIPSCHULTZ C A. Structure and phycobiliprotein composition of phycobilisomes from Griffithsia pacifica (Rhodophyceae) [J]. Journal of Phycology, 1980, 16: 394-398.
[19] GUGLIELMI G, COHEN-BAZIRE G, BRYANT D A. The structure of Gloeobacter violaceus and its phycobilisomes [J]. Archives of Microbiology, 1981, 129: 181-189.
[20] HU Q, MARQUARDT J, IWASAKI I, et al. Molecular structure, localization and function of biliproteins in the chlorophyll a/ d containing oxygenic photosynthetic prokaryote Acaryochloris marina [J]. Biochimica et Biophysica Acta, 1999, 1412: 250-261.
[21] MARQUARDT J, SENGER H, MIYASHITA H, et al. Isolation and characterization of biliprotein aggregates from Acaryochloris marina, a prochloron-like prokaryote containing mainly chlorophyll d [J]. FEBS Letters, 1997, 410: 428-432.
[22] 林瀚智. 藻胆体结构多样性研究及黄海绿潮早期形成过程分析 [D]. 青岛: 中国科学院研究生院(海洋研究所), 2012.
[23] JIANG T, ZHANG J P, CHANG W R, et al. Crystal structure of R-phycocyanin and possible energy transfer pathways in the phycobilisome [J]. Biophysical Journal, 2001, 81(2): 1171-1179.
[24] JIANG T, ZHANG J, LIANG D. Structure and function of chromophores in R-phycoerythrin at 1.9 Å resolution [J]. Proteins, 1999, 34(2): 224-231.
[25] GAO X, ZHANG N, WEI T D, et al. Crystal structure of the N-terminal domain of linker L(R) and the assembly of cyanobacterial phycobilisome rods [J]. Molecular Microbiology, 2011, 82: 698-705.
[26] YI Z W, HUANG H, KUANG T Y, et al. Three-dimensional architecture of phycobilisomes from Nostoc flagelliforme revealed by single particle electron microscopy [J]. FEBS Letters, 2005, 579: 3569-3573.
[27] CHANG L, LIU X, LI Y, et al. Structural organization of an intact phycobilisome and its association with photosystem II [J]. Cell Research, 2015, 25: 726-737.
[28] MA J, YOU X, SUN S, et al. Structural basis of energy transfer in Porphyridium purpureum phycobilisome [J]. Nature, 2020, 579: 146-151.
[29] SCHIRMER T, HUBER R, SCHNEIDER M, et al. Crystal structure analysis and refinement at 2.5 Å of hexameric C-phycocyanin from the cyanobacterium Agmenellum quadruplicatum. The molecular model and its implications for light-harvesting [J]. Journal of Molecular Biology, 1986, 188: 651-676.
[30] MACCOLL R. Allophycocyanin and energy transfer [J]. Biochimica et Biophysica Acta, 2004, 1657: 73-81.
[31] GROSSMAN A R, SCHAEFER M R, CHIANG G G, et al. The phycobilisome, a light-harvesting complex responsive to environmental conditions [J]. Microbiological Reviews, 1993, 57: 725-749.
[32] LI H, SHERMAN L A. Characterization of Synechocystis sp. strain PCC 6803 and deltanbl mutants under nitrogen-deficient conditions [J]. Archives of Microbiology, 2002, 178: 256-266.
[33] GLAZER A N. Phycobilisomes: structure and dynamics [J]. Annual Review of Microbiology, 1982, 36: 173-198.
[34] SIX C, THOMAS J C, THION L, et al. Two novel phycoerythrinassociated linker proteins in the marine cyanobacterium Synechococcus sp. strain WH8102 [J]. Journal of Bacteriology, 2005, 187: 1685-1694.
[35] ANDERSON L K, TOOLE C M. A model for early events in the assembly pathway of cyanobacterial phycobilisomes [J]. Molecular Microbiology, 1998, 30: 467-474.
[36] SCHIRMER T, BODE W, HUBER R. Refined three-dimensional structures of two cyanobacterial C-phycocyanins at 2.1 and 2.5 Å resolution. A common principle of phycobilin-protein interaction [J]. Journal of Molecular Biology, 1987, 196: 677-695.
[37] REUTER W, WIEGAND G, HUBER R, et al. Structural analysis at 2.2 Å of orthorhombic crystals presents the asymmetry of the allophycocyanin-linker complex, AP. LC7. 8, from phycobilisomes of Mastigocladus laminosus [J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96: 1363-1368.
[38] GAO X, WEI T D, ZHANG N, et al. Molecular insights into the terminal energy acceptor in cyanobacterial phycobilisome [J]. Molecular Microbiology, 2012, 85(5): 907-915.
[39] JALLET D, GWIZDALA M, KIRILOVSKY D. ApcD, ApcF and ApcE are not required for the orange carotenoid protein related phycobilisome fluorescence quenching in the cyanobacterium Synechocystis PCC 6803 [J]. Biochimica et Biophysica Acta, 2012, 1817: 1418-1427.
[40] GUAN X, QIN S, ZHAO F, et al. Phycobilisomes linker family in cyanobacterial genomes: divergence and evolution [J]. International Journal of Biological Sciences, 2007, 3: 434-445.
[41] MCGREGOR A, KLARTAG M, DAVID L, et al. Allophycocyanin trimer stability and functionality are primarily due to polar enhanced hydrophobicity of the phycocyanobilin binding pocket [J]. Journal of Molecular Biology, 2008, 384: 406-421.
[42] LIU L N, CHEN X L, ZHANG Y Z, et al. Characterization, structure and function of linker polypeptides in phycobilisomes of cyanobacteria and red algae: an overview [J]. Biochimica et Biophysica Acta, 2005, 1708: 133-142.
[43] PARBEL A, SCHEER H. Model for the phycobilisome rod with interlocking disks based on domain-weighted linker-polypeptide sequence homologies of Mastigocladus laminosus [J]. International Journal of Photoenergy, 2000, 2: 31-40.
[44] ONISHI A, AIKAWA S, KONDO A, et al. Energy transfer in Anabaena variabilis filaments under nitrogen depletion, studied by time-resolved fluorescence [J]. Photosynthesis Research, 2015, 125: 191-199.
[45] FÖRSTER T. Zwischenmolecculare energiewanderung und fluoreszenz [J]. Annals of Physics, 1948, 2: 55-75.
[46] FÖRSTER T. Transfer mechanisms of electronic excitation energy [J]. Radiation Research Supplement, 1960, 2: 326-339. [47] FÖRSTER T. Delocalized excitation and excitation transfer [M]// SINANOGLU O. Modern Quantum Chemistry, Istanbul Lectures. New York: Academic Press, 1965: 93-137.
[48] SINNOKROT M O, VALEEV E F, SHERRILL C D. Estimates of the ab initio limit for pi-pi interactions: the benzene dimer [J]. Journal of the American Chemical Society, 2002, 124(36): 10887- 10893.
[49] ANIGHORO A. Underappreciated chemical interactions in proteinligand complexes [J]. Methods in Molecular Biology, 2020, 2114: 75-86.
[50] MCLEAN T M, TELFER S G, ELLIOTT A B, et al. Molecular excitons in a copper azadipyrrin complex [J]. Dalton Transactions, 2014, 43(47): 17746-17753.
[51] ASHBY M K, MULLINEAUX C W. The role of ApcD and ApcF in energy transfer from phycobilisomes to PSI and PSII in a cyanobacterium [J]. Photosynthesis Research, 1999, 61: 169-179.
[52] CALZADILLA P I, MUZZOPAPPA F, SETIF D, et al. Different roles for ApcD and ApcF in Synechococcus elongatus and Synechocystis sp. PCC 6803 phycobilisomes [J]. Biochimica et Biophysica Acta Bioenergetics, 2019, 1860(6): 488-498.
[53] KUZMINOV F I, BOLYCHEVTSEVA Y V, ELANSKAYA I V, et al. Effect of APCD and APCF subunits depletion on phycobilisome fluorescence of the cyanobacterium Synechocystis PCC 6803 [J]. Journal of Photochemistry and Photobiology B: Biology, 2014, 133: 153-160.
[54] DONG C, TANG A, ZHAO J, et al. ApcD is necessary for efficient energy transfer from phycobilisomes to photosystem I and helps to prevent photoinhibition in the cyanobacterium Synechococcus sp. PCC 7002 [J]. Biochimica et Biophysica Acta, 2009, 1787(9): 1122-1128.
[55] GANTT E. Structure and function of phycobilisomes: light harvesting pigment complexes in red and blue-green algae [J]. International Review of Cytology, 1980, 66: 45-80.
[56] LIU H, ZHANG, H, NIEDZWIEDZKI D M, et al. Phycobilisomes supply excitations to both photosystems in a megacomplex in cyanobacteria [J]. Science, 2013, 342: 1104-1107.
[57] WATANABE M, SEMCHONOK D A, WEBBER-BIRUNGI M T, et al. Attachment of phycobilisomes in an antenna-photosystem I supercomplex of cyanobacteria [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(7): 2512-2517.
[58] BARBER J. Photosynthetic energy conversion: natural and artificial [J]. Chemical Society Reviews, 2009, 38(1): 185-196.
[59] BARBER J, TRAN P D. From natural to artificial photosynthesis [J]. Journal of the Royal Society, 2013, 10(81): 20120984.
[60] O'REGAN B C, GRÄTZEL M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature, 1991, 353(6346): 737-740.
/
〈 |
|
〉 |