[1] SANTOS R, URSU O, GAULTON A, et al. A comprehensive map of
molecular drug targets [J]. Nat Rev Drug Discov, 2017, 16(1): 19-34.
[2] GOODNOW JR R A, DUMELIN C E, KEEFE A D. DNA-encoded
chemistry: enabling the deeper sampling of chemical space [J]. Nat
Rev Drug Discov, 2017, 16(2): 131-147.
[3] KLEINER R E, DUMELIN C ELIU D R. Small-molecule discovery
from DNA-encoded chemical libraries [J]. Chem Soc Rev, 2011,
40(12): 5707-5717.
[4] KODADEK T, PACIARONI N G, BALZARINI M, et al. Beyond
protein binding: Recent advances in screening DNA-encoded
libraries [J]. Chem Commun (Camb), 2019, 55(89): 13330-13341.
[5] NERI D, LERNER R A. DNA-encoded chemical libraries: A
selection system based on endowing organic compounds with
amplifiable information [J]. Annu Rev Biochem, 2018, 87: 479-502.
[6] AHN S, KAHSAI A W, PANI B, et al. Allosteric “beta-blocker”
isolated from a DNA-encoded small molecule library [J]. Proc Natl
Acad Sci USA, 2017, 114(7): 1708-1713.
[7] AHN S, PANI B, KAHSAI A W, et al. Small-molecule positive
allosteric modulators of the beta2-adrenoceptor isolated from DNAencoded libraries [J]. Mol Pharmacol, 2018, 94(2): 850-861.
[8] WU Z, GRAYBILL T L, ZENG X, et al. Cell-based selection
expands the utility of DNA-encoded small-molecule library
technology to cell surface drug targets: Identification of novel
antagonists of the NK3 tachykinin receptor [J]. ACS Comb Sci,
2015, 17(12): 722-731.
[9] ANNIS A, CHUANG C C, NAZEF N. Mass spectrometry in
medicinal chemistry [M]. Weinheim, Germany: WILEY -VCH
Verlag GmbH & Co KGaA, 2007: 121-156.
[10] CHEN X, LI L, CHEN S, et al. Identification of inhibitors of the
antibiotic-resistance target New Delhi metallo-beta-lactamase
1 by both nanoelectrospray ionization mass spectrometry and
ultrafiltration liquid chromatography/mass spectrometry approaches
[J]. Anal Chem, 2013, 85(16): 7957-7965.
[11] CHEN X, QIN S, CHEN S, et al. A ligand-observed mass spectrometry approach integrated into the fragment based lead
discovery pipeline [J]. Sci Rep, 2015, 5: 8361.
[12] GESMUNDO N J, SAUVAGNAT B, CURRAN P J, et al. Nanoscale
synthesis and affinity ranking [J]. Nature, 2018, 557(7704): 228-232.
[13] O’CONNELL T N, RAMSAY J, RIETH S F, et al. Solution-based
indirect affinity selection mass spectrometry—a general tool for
high-throughput screening of pharmaceutical compound libraries
[J]. Anal Chem, 2014, 86(15): 7413-7420.
[14] QIN S, REN Y, FU X, et al. Multiple ligand detection and affinity
measurement by ultrafiltration and mass spectrometry analysis
applied to fragment mixture screening [J]. Anal Chim Acta, 2015,
886: 98-106.
[15] KUMARI P, GHOSH E, SHUKLA A K. Emerging approaches to
GPCR ligand screening for drug discovery [J]. Trends Mol Med,
2015, 21(11): 687-701.
[16] CALLERI E, CERUTI S, CRISTALLI G, et al. Frontal affinity
chromatography-mass spectrometry useful for characterization of
new ligands for GPR17 receptor [J]. J Med Chem, 2010, 53(9):
3489-3501.
[17] MA J, LU Y, WU D, et al. Ligand identification of the adenosine
A2A receptor in self-assembled nanodiscs by affinity mass
spectrometry [J]. Anal Methods, 2017, 9(40): 5851-5858.
[18] MASSINK A, HOLZHEIMER M, HOLSCHER A, et al. Mass
spectrometry-based ligand binding assays on adenosine A1 and A2A
receptors [J]. Purinergic Signal, 2015, 11(4): 581-594.
[19] QIN S, MENG M, YANG D, et al. High-throughput identification
of G protein-coupled receptor modulators through affinity mass
spectrometry screening [J]. Chem Sci, 2018, 9(12): 3192-3199.
[20] TEMPORINI C, MASSOLINI G, MARUCCI G, et al. Development
of new chromatographic tools based on A2A adenosine receptor
subtype for ligand characterization and screening by FAC-MS [J].
Anal Bioanal Chem, 2013, 405(2/3): 837-845.
[21] WHITEHURST C E, YAO Z, MURPHY D, et al. Application of
affinity selection-mass spectrometry assays to purification and
affinity-based screening of the chemokine receptor CXCR4 [J].
Comb Chem High Throughput Screen, 2012, 15(6): 473-485.
[22] YEN H Y, HOI K K, LIKO I, et al. PtdIns(4,5)P2 stabilizes active
states of GPCRs and enhances selectivity of G-protein coupling [J].
Nature, 2018, 559(7714): 423-427.
[23] YEN H Y, HOPPER J T S, LIKO I, et al. Ligand binding to a G
protein-coupled receptor captured in a mass spectrometer [J]. Sci
Adv, 2017, 3(6): e1701016.
[24] DENG Y, SHIPPS JR G W, COOPER A, et al. Discovery of novel,
dual mechanism ERK inhibitors by affinity selection screening of an
inactive kinase [J]. J Med Chem, 2014, 57(21): 8817-8826.
[25] KUTILEK V D, ANDREWS C L, RICHARDS M P, et al.
Integration of affinity selection-mass spectrometry and functional cell-based assays to rapidly triage druggable target space within the
NF-κB pathway [J]. J Biomol Screen, 2016, 21(6): 608-619.
[26] WALKER S S, DEGEN D, NICKBARG E, et al. Affinity selectionmass spectrometry identifies a novel antibacterial RNA polymerase
inhibitor [J]. ACS Chem Biol, 2017, 12(5): 1346-1352.
[27] ZHANG T, LIU Y, YANG X, et al. Definitive metabolite
identification coupled with automated ligand identification system
(ALIS) technology: A novel approach to uncover structure-activity
relationships and guide drug design in a factor IXa inhibitor program
[J]. J Med Chem, 2016, 59(5): 1818-1829.
[28] LU Y, QIN S, ZHANG B, et al. Accelerating the throughput of
affinity mass spectrometry-based ligand screening toward a G
protein-coupled receptor [J]. Anal Chem, 2019, 91(13): 8162-8169.
[29] CHOI Y, JERMIHOV K, NAM S J, et al. Screening natural products
for inhibitors of quinone reductase-2 using ultrafiltration LC-MS [J].
Anal Chem, 2011, 83(3): 1048-1052.
[30] FU X, WANG Z, LI L, et al. Novel chemical ligands to Ebola virus
and Marburg virus nucleoproteins identified by combining affinity
mass spectrometry and metabolomics approaches [J]. Sci Rep, 2016,
6: 29680.
[31] SONG H P, CHEN J, HONG J Y, et al. A strategy for screening of
high-quality enzyme inhibitors from herbal medicines based on
ultrafiltration LC-MS and in silico molecular docking [J]. Chem
Commun (Camb), 2015, 51(8): 1494-1497.
[32] WANG L, LIU Y, LUO Y, et al. Quickly screening for potential
alpha-glucosidase inhibitors from guava leaves tea by bioaffinity
ultrafiltration coupled with HPLC-ESI-TOF/MS method [J]. J Agric
Food Chem, 2018, 66(6): 1576-1582.
[33] WANG Z, LIANG H, CAO H, et al. Efficient ligand discovery
from natural herbs by integrating virtual screening, affinity massspectrometry and targeted metabolomics [J]. Analyst, 2019, 144(9):
2881-2890.
[34] YANG Z, ZHANG Y, SUN L, et al. An ultrafiltration highperformance liquid chromatography coupled with diode array
detector and mass spectrometry approach for screening and
characterising tyrosinase inhibitors from mulberry leaves [J]. Anal
Chim Acta, 2012, 719: 87-95.
[35] ZHANG B, ZHAO S, YANG D, et al. A Novel G protein-biased
and subtype-selective agonist for a G protein-coupled receptor
discovered from screening herbal extracts [J]. ACS Cent Sci, 2020,
6(2): 213-225.
[36] UDUGAMASOORIYA D G, DINEEN S P, BREKKEN R A, et al.
A peptoid “antibody surrogate” that antagonizes VEGF receptor 2
activity [J]. J Am Chem Soc, 2008, 130(17): 5744-5752.
[37] HOFNER G, WANNER K T. Competitive binding assays made
easy with a native marker and mass spectrometric quantification [J].
Angew Chem Int Ed Engl, 2003, 42(42): 5235-5237.
[38] NIESSEN K V, HOFNER G, WANNER K T. Competitive MS
binding assays for dopamine D2 receptors employing spiperone as a
native marker [J]. ChemBioChem, 2005, 6(10): 1769-1775.
[39] ZEPPERITZ C, HOFNER G, WANNER K T. MS-binding
assays: kinetic, saturation, and competitive experiments based
on quantitation of bound marker as exemplified by the GABA
transporter mGAT1 [J]. ChemMedChem, 2006, 1(2): 208-217.
[40] NEIENS P, HOFNER G, WANNER K T. MS binding assays for
D1 and D5 dopamine receptors [J]. ChemMedChem, 2015, 10(11):
1924-1931.
[41] SCHULLER M, HOFNER G, WANNER K T. Simultaneous
multiple MS binding assays addressing D1 and D2 dopamine
receptors [J]. ChemMedChem, 2017, 12(19): 1585-1594.
|