[1] GBD 2015 Disease and Injury Incidence and Prevalence
Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195
countries and territories, 1990-2017: A systematic analysis for the
global burden of disease study 2017 [J]. Lancet, 2018, 392(10159):
1789-1858.
[2] WILSON B S, TUCCI D L, MERSON M H, et al. Global hearing
health care: new findings and perspectives [J]. Lancet, 2017,
390(10111): 2503-2515.
[3] LESICA N A. Why do hearing aids fail to restore normal auditory
perception? [J]. Trends Neurosci, 2018, 41(4): 174-185.
[4] CARLSON M L, DRISCOLL C L, GIFFORD R H, et al. Cochlear
implantation: current and future device options [J]. Otolaryngol Clin
North Am, 2012, 45(1): 221-248.
[5] GAO X, TAO Y, LAMAS V, et al. Treatment of autosomal dominant
hearing loss by in vivo delivery of genome editing agents [J].
Nature, 2018, 553(7687): 217-221.
[6] XIONG W, WAGNER T, YAN L, et al. Using injectoporation to
deliver genes to mechanosensory hair cells [J]. Nat Protoc, 2014,
9(10): 2438-2449.
[7] HASTIE E, SAMULSKI R J. Adeno-associated virus at 50: a golden
anniversary of discovery, research, and gene therapy success — a
personal perspective [J]. Hum Gene Ther, 2015, 26(5): 257-265.
[8] NASO M F, TOMKOWICZ B, PERRY W L, et al. Adeno-associated
virus (AAV) as a vector for gene therapy [J]. BioDrugs, 2017, 31(4):
317-334.
[9] ROSE J A, HOGGAN M D, SHATKIN A J. Nucleic acid from an
adeno-associated virus: chemical and physical studies [J]. Proc Natl
Acad Sci USA, 1966, 56(1): 86-92.
[10] ROSE J A, BERNS K I, HOGGAN M D, et al. Evidence for a
single-stranded adenovirus-associated virus genome: formation of a
DNA density hybrid on release of viral DNA [J]. Proc Natl Acad Sci
USA, 1969, 64(3): 863-869.
[11] SAMULSKI R J, MUZYCZKA N. AAV-Mediated gene therapy for
research and therapeutic purposes [J]. Annu Rev Virol, 2014, 1(1):
427-451.
[12] NAUMER M, SONNTAG F, SCHMIDT K, et al. Properties of
the adeno-associated virus assembly-activating protein [J]. J Virol,
2012, 86(23): 13038-13048.
[13] EARLEY L F, POWERS J M, ADACHI K, et al. Adeno-associated
virus (AAV) assembly-activating protein is not an essential
requirement for capsid assembly of AAV serotypes 4, 5, and 11 [J]. J
Virol, 2017, 91(3): e01980-16. doi:10.1128/JVI.01980-16.
[14] GAO G, VANDENBERGHE L H, WILSON J M. New recombinant
serotypes of AAV vectors [J]. Curr Gene Ther, 2005, 5(3): 285-297.
[15] KEELER A M, FLOTTE T R. Recombinant adeno-associated virus
gene therapy in light of luxturna (and zolgensma and glybera):
Where are we, and how did we get here? [J]. Annu Rev Virol, 2019,
6(1): 601-621.
[16] RUSSELL S, BENNETT J, WELLMAN J A, et al. Efficacy and safety
of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-
mediated inherited retinal dystrophy: a randomised, controlled, openlabel, phase 3 trial [J]. Lancet, 2017, 390(10097): 849-860.
[17] LANDEGGER L D, PAN B, ASKEW C, et al. A synthetic AAV
vector enables safe and efficient gene transfer to the mammalian
inner ear [J]. Nat Biotechnol, 2017, 35(3): 280-284.
[18] SUZUKI J, HASHIMOTO K, XIAO R, et al. Cochlear gene therapy with ancestral AAV in adult mice: complete transduction of inner
hair cells without cochlear dysfunction [J]. Sci Rep, 2017, 7: 45524.
[19] ISGRIG K, MCDOUGALD D S, ZHU J, et al. AAV2.7m8 is a
powerful viral vector for inner ear gene therapy [J]. Nat Commun,
2019, 10(1): 427.
[20] WANG D, TAI P W L, GAO G. Adeno-associated virus vector as a
platform for gene therapy delivery [J]. Nat Rev Drug Discov, 2019,
18(5): 358-378.
[21] OGDEN P J, KELSIC E D, SINAI S, et al. Comprehensive AAV
capsid fitness landscape reveals a viral gene and enables machineguided design [J]. Science, 2019, 366(6469): 1139-1143.
[22] HARTL D, KREBS A R, JÜTTNER J, et al. Cis-regulatory
landscapes of four cell types of the retina [J]. Nucleic Acids Res,
2017, 45(20): 11607-11621.
[23] LAN Y, TAO Y, WANG Y, et al. Recent development of AAV-based
gene therapies for inner ear disorders [J]. Gene Ther, 2020, 27(7/8):
329-337.
[24] AKIL O, SEAL R P, BURKE K, et al. Restoration of hearing in the
VGLUT3 knockout mouse using virally mediated gene therapy [J].
Neuron, 2012, 75(2): 283-293.
[25] PAN B, ASKEW C, GALVIN A, et al. Gene therapy restores auditory
and vestibular function in a mouse model of Usher syndrome type
1c [J]. Nat Biotechnol, 2017, 35(3): 264-272.
[26] IIZUKA T, KAMIYA K, GOTOH S, et al. Perinatal Gjb2 gene
transfer rescues hearing in a mouse model of hereditary deafness [J].
Hum Mol Genet, 2015, 24(13): 3651-3661.
[27] KIM M A, CHO H J, BAE S H, et al. Methionine sulfoxide reductase
B3-targeted in utero gene therapy rescues hearing function in a
mouse model of congenital sensorineural hearing loss [J]. Antioxid
Redox Signal, 2016, 24(11): 590-602.
[28] CHANG Q, WANG J J, LI Q, et al. Virally mediated Kcnq1 gene
replacement therapy in the immature scala media restores hearing
in a mouse model of human Jervell and Lange-Nielsen deafness
syndrome [J]. Embo Molecular Medicine, 2015, 7(8): 1077-1086.
[29] NIST-LUND C A, PAN B, PATTERSON A, et al. Improved TMC1
gene therapy restores hearing and balance in mice with genetic inner
ear disorders [J]. Nat Commun, 2019, 10(1): 236.
[30] SHIBATA S B, RANUM P T, MOTEKI H, et al. RNA interference
prevents autosomal-dominant hearing loss [J]. Am J Hum Genet,
2016, 98(6): 1101-1113.
[31] GYORGY B, NIST-LUND C, PAN B, et al. Allele-specific gene
editing prevents deafness in a model of dominant progressive
hearing loss [J]. Nat Med, 2019, 25(7): 1123-1130.
[32] ESTIVILL X, FORTINA P, SURREY S, et al. Connexin-26
mutations in sporadic and inherited sensorineural deafness [J].
Lancet, 1998, 351(9100): 394-398.
|