[1] ALLEN J P, WILLIAMS J C. Photosynthetic reaction centers [J]. FEBS Letters, 1998, 438: 5-9.
[2] CARDONA T. A fresh look at the evolution and diversification of
photochemical reaction centers [J]. Photosynthesis Research, 2015,
126: 111-134.
[3] DEISENHOFER J, EPP O, MIKI K, et al. Structure of the protein
subunits in the photosynthetic reaction centre of Rhodopseudomonas
viridis at 3 Å resolution [J]. Nature, 1985, 318: 618-624.
[4] KARRASCH S, BULLOUGH P A, GHOSH R. The 8.5 Å projection
map of the light-harvesting complex I from Rhodospirillum rubrum
reveals a ring composed of 16 subunits [J]. The EMBO Journal,
1995, 14: 631-638.
[5] ALEKSANDER W R, TINA D H, JUNE S, et al. Crystal structure
of the RC-LH1 core complex from Rhodopseudomonas palustris [J].
Science, 2003, 302: 1969-1972.
[6] QIAN P, PAPIZ M Z, JACKSON P J, et al. Three-dimensional
structure of the Rhodobacter sphaeroides RC-LH1-PufX complex:
dimerization and quinone channels promoted by PufX [J].
Biochemistry, 2013, 52: 7575-7585.
[7] JORDAN P, FROMME P, WITT H T, et al. Three-dimensional
structure of cyanobacterial photosystem I at 2.5 Å resolution [J].
Nature, 2001, 411: 909-917.
[8] UMENA Y, KAWAKAMI K, SHEN J R, et al. Crystal structure of
oxygen-evolving photosystem II at a resolution of 1.9 Å [J]. Nature,
2011, 473: 55-60.
[9] NIWA S, YU L J, TAKEDA K, et al. Structure of the LH1-RC
complex from Thermochromatium tepidum at 3.0 Å [J]. Nature,
2014, 508: 228-232.
[10] GISRIEL C, SARROU I, FERLEZ B, et al. Structure of a symmetric
photosynthetic reaction center–photosystem [J]. Science, 2017, 357:
1021-1025.
[11] YU L J, SUGA M, WANG-OTOMO Z Y, et al. Structure of
photosynthetic LH1-RC supercomplex at 1.9 Å resolution [J].
Nature, 2018, 556: 209-213.
[12] XIN Y Y, SHI Y, NIU T, et al. Cryo-EM structure of the RC-LH core
complex from an early branching photosynthetic prokaryote [J].
Nature Communications, 2018, 9: 1568. DOI: 10.1038/s41467-018-
03881-x.
[13] QIAN P, SIEBERT C A, WANG P, et al. Cryo-EM structure of the
Blastochloris viridis LH1-RC complex at 2.9 Å [J]. Nature, 2018,
556: 203-208.
[14] CARDONA T, RUTHERFORD A W. Evolution of photochemical
reaction centres: more twists [J]. Trends in Plant Science, 2019, 24:
1008-1021.
[15] CARDONA T. Thinking twice about the evolution of photosynthesis
[J]. Open Biology, 2019, 9(9): 180246. DOI: 10.1098/rsob.180246.
[16] OLSON J M, BLANKENSHIP R E. Thinking about the evolution of
photosynthesis [J]. Photosynthesis Research, 2004, 80: 373-386.
[17] HE Z, FERLEZ B, KURASHOV V, et al. Reaction centers of the
thermophilic microaerophile, Chloracidobacterium thermophilum
(Acidobacteria) I: biochemical and biophysical characterization [J].
Photosynthesis Research, 2019, 142: 87-103.
[18] BEATTY J T, OVERMANN J, LINCE M T, et al. An obligately
photosynthetic bacterial anaerobe from a deep-sea hydrothermal
vent [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102: 9306-9310.
[19] IMHOFF J F. The family chlorobiaceae [M]//ROSENBERG E,
DELONG E F, LORY S, et al(eds). The Prokaryotes. Berlin:
Springer, 2014. DOI: 10.1007/978-3-642-38954-2_142.
[20] 翁羽翔. 光合细菌分子自组装捕光天线相干激子态传能机制的人工模拟[J]. 物理, 2016, 45(12): 798-800. DOI: 10.7693/
wl20161207.
[21] WAHLUND T M, WOESE C R, CASTENHOLZ R W, et al. A
thermophilic green sulfur bacterium from New Zealand hot springs,
Chlorobium tepidum sp. nov [J]. Archives of Microbiology, 1991,
156: 81-90.
[22] PEDERSEN M Ø, UNDERHAUG J, DITTMER J, et al. The threedimensional structure of CsmA: a small antenna protein from the
green sulfur bacterium Chlorobium tepidum [J]. FEBS Letters,
2008, 582: 2869-2874.
[23] HOHMANN-MARRIOTT M F, BLANKENSHIP R E, ROBERSON
R W. The ultrastructure of Chlorobium tepidum chlorosomes
revealed by electron microscopy [J]. Photosynthesis Research, 2005,
86: 145-154.
[24] ORF G S, BLANKENSHIP R E. Chlorosome antenna complexes
from green photosynthetic bacteria [J]. Photosynthesis Research,
2013, 116: 315-331.
[25] NOZAWA T, OHTOMO K, SUZUKI M, et al. Structures of
chlorosomes and aggregated BChlc in Chlorobium tepidum from
solid state high resolution CP/MAS13C NMR [J]. Photosynthesis
Research, 1994, 41: 211-223.
[26] OOSTERGETEL G T, VAN AMERONGEN H, BOEKEMA E
J. The chlorosome: a prototype for efficient light harvesting in
photosynthesis [J]. Photosynthesis Research, 2010, 104: 245-255.
[27] NIELSEN J T, KULMINSKAYA N V, BJERRING M, et al. In
situ high-resolution structure of the baseplate antenna complex in
Chlorobaculum tepidum [J]. Nature Communications, 2016, 7:
12454. DOI: 10.1038/ncomms12454.
[28] FENNA R E, MATTHEWS B W. Chlorophyll arrangement in a
bacteriochlorophyll protein from Chlorobium limicola [J]. Nature,
1975, 258: 573-577.
[29] OLSON J M. The FMO protein [J]. Photosynthesis Research, 2004,
80: 181-187.
[30] CAMARA-ARTIGAS A, BLANKENSHIP R E, ALLEN J P. The
structure of the FMO protein from Chlorobium tepidum at 2.2 Å
resolution [J]. Photosynthesis Research, 2003, 75: 49-55.
[31] LARSON C R, SENG C O, LAUMAN L, et al. The threedimensional structure of the FMO protein from Pelodictyon
phaeum and the implications for energy transfer [J]. Photosynthesis
Research, 2011, 107: 139-150.
[32] KELL A, ACHARYA K, ZAZUBOVICH V, et al. On the
controversial nature of the 825 nm exciton band in the FMO protein
complex [J]. The Journal of Physical Chemistry Letters, 2014, 5:
1450-1456.
[33] KELL A, KHMELNITSKIY A Y, REINOT T, et al. On uncorrelated
inter-monomer Forster energy transfer in Fenna-Matthews-Olson
complexes [J]. Journal of the Royal Society Interface, 2019, 16:
20180882. DOI: 10.1098/rsif.2018.0882.
[34] HAUSKA G, SCHOEDL T, REMIGY H, et al. The reaction center of green sulfur bacteria [J]. Biochimica et Biophysica Acta (BBA) -
Bioenergetics, 2001, 1507: 260-277.
[35] EISEN J A, NELSON K E, PAULSEN I T, et al. The complete
genome sequence of Chlorobium tepidum TLS, a photosynthetic,
anaerobic, green-sulfur bacterium [J]. Proceedings of the National
Academy of Sciences of the United States of America, 2002, 99:
9509-9514.
[36] BUTTNER M, XIE D L, NELSON H, et al. The photosystem
I-like P840-reaction center of green S-bacteria is a homodimer [J].
Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1992, 1101:
154-156.
[37] BUTTNER M, XIE D L, NELSON H, et al. Photosynthetic reaction
center genes in green sulfur bacteria and in photosystem I are related
[J]. Proceedings of the National Academy of Sciences of the United
States of America, 1992, 89: 8135-8139.
[38] TSUKATANI Y, MIYAMOTO R, ITOH S, et al. Function of a
PscD subunit in a homodimeric reaction center complex of the
photosynthetic green sulfur bacterium Chlorobium tepidum studied
by insertional gene inactivation. Regulation of energy transfer and
ferredoxin-mediated NADP+
reduction on the cytoplasmic side [J].
Journal of Biological Chemistry, 2004, 279: 51122-51130.
[39] HIRANO Y, HIGUCHI M, AZAI C, et al. Crystal structure of the
electron carrier domain of the reaction center cytochrome c(z) subunit
from green photosynthetic bacterium Chlorobium tepidum [J].
Journal of Molecular Biology, 2010, 397: 1175-1187.
[40] PERMENTIER H P, SCHMIDT K A, KOBAYASHI M, et al.
Composition and optical properties of reaction centre core
complexes from the green sulfur bacteria Prosthecochloris aestuarii
and Chlorobium tepidum [J]. Photosynthesis Research, 2000, 64:
27-39.
[41] GRIESBECK C, HAGER-BRAUN C, ROGL H, et al. Quantitation
of P840 reaction center preparations from Chlorobium tepidum:
chlorophylls and FMO-protein [J]. Biochimica et Biophysica Acta
(BBA)-Bioenergetics, 1998, 1365: 285-293.
[42] KOBAYASHI M, OH-OKA H, AKUTSU S, et al. The primary
electron acceptor of green sulfur bacteria, bacteriochlorophyll 663,
is chlorophyll a esterified with ∆2,6-phytadienol [J]. Photosynthesis
Research, 2000, 63: 269-280.
[43] TSIOTIS G, HAGER-BRAUN C, WOLPENSINGER B, et al.
Structural analysis of the photosynthetic reaction center from the
green sulfur bacterium Chlorobium tepidum [J]. Biochimica et
Biophysica Acta (BBA)-Bioenergetics, 1997, 1322: 163-172.
[44] REMIGY H W, STAHLBERG H, FOTIADIS D, et al. The reaction
center complex from the green sulfur bacterium Chlorobium
tepidum: a structural analysis by scanning transmission electron
microscopy [J]. Journal of Molecular Biology, 1999, 290: 851-858.
[45] BÍNA D, GARDIAN Z, VÁCHA F, et al. Native FMO-reaction
center supercomplex in green sulfur bacteria: an electron microscopy
study [J]. Photosynthesis Research, 2016, 128: 93-102.
[46] CHEN J H, WU H, XU C, et al. Architecture of the photosynthetic
complex from a green sulfur bacterium [J]. Science, 2020,
370(6519): eabb6350. DOI: 10.1126/science.abb6350.
[47] HAGER-BRAUN C, XIE D L, JAROSCH U, et al. Stable
photobleaching of P840 in Chlorobium reaction center preparations: Presence of the 42-kDa bacteriochlorophyll a protein and a 17-kDa
polypeptide [J]. Biochemistry, 1995, 34: 9617-9624.
[48] CAUSGROVE T P, BRUNE D C, WANG J, et al. Energy
transfer kinetics in whole cells and isolated chlorosomes of green
photosynthetic bacteria [J]. Photosynthesis Research, 1990, 26: 39-48.
[49] FETISOVA Z, FREIBERG A, TIMPMANN K. Long-range
molecular order as an efficient strategy for light harvesting in
photosynthesis [J]. Nature, 1988, 334: 633-634.
[50] FRANCKE C, OTTE S C M, MILLER M, et al. Energy transfer
from carotenoid and FMO-protein in subcellular preparations from
green sulfur bacteria. Spectroscopic characterization of an FMOreaction center core complex at low temperature [J]. Photosynthesis
Research, 1996, 50: 71-77.
[51] NELSON N. Plant photosystem I—The most efficient nanophotochemical machine [J]. Journal of Nanoscience and
Nanotechnology, 2009, 9: 1709-1713.
[52] HE G, NIEDZWIEDZKI D M, ORF G S, et al. Dynamics of energyand electron transfer in the FMO-reaction center core complex from
the phototrophic green sulfur bacterium chlorobaculum tepidum [J].
The Journal of Physical Chemistry B, 2015, 119: 8321-8329.
[53] MAGDAONG N C M, NIEDZWIEDZKI D M, SAER R G, et al.
Excitation energy transfer kinetics and efficiency in phototrophic
green sulfur bacteria [J]. Biochimica et Biophysica Acta (BBA) -
Bioenergetics, 2018, 1859: 1180-1190.
[54] QIN X, SUGA M, KUANG T, et al. Structural basis for energy
transfer pathways in the plant PSI-LHCI supercomplex [J]. Science,
2015, 348: 989-995.
[55] MAZOR Y, BOROVIKOVA A, CASPY I, et al. Structure of the
plant photosystem I supercomplex at 2.6 Å resolution [J]. Nature
Plants, 2017, 3: 17014. DOI: 10.1038/nplants.2017.14.
[56] MÜH F, MADJET M E, ADOLPHS J, et al. α-helices direct
excitation energy flow in the Fenna-Matthews-Olson protein [J].
Proceedings of the National Academy of Sciences of the United
States of America, 2007, 104: 16862-16867.
|