[1] LERNER R A. Manufacturing immunity to disease in a test tube: the
magic bullet realized [J]. Angew Chem Int Ed, 2006, 45(48): 8106-
8125.
[2] ORLANDI R, GUSSOW D H, JONES P T, et al. Cloning
immunoglobulin variable domains for expression by the polymerase
chain reaction [J]. Proc Natl Acad Sci USA, 1989, 86(10): 3833-3837.
[3] PERSSON M A. Twenty years of combinatorial antibody libraries,
but how well do they mimic the immunoglobulin repertoire? [J].
Proc Natl Acad Sci USA, 2009, 106(48): 20137-20138.
[4] LERNER R A. Combinatorial antibody libraries: new advances, new
immunological insights [J]. Nat Rev Immunol, 2016, 16(8): 498-508.
[5] LIN C W, LERNER R A. Antibody libraries as tools to discover
functional antibodies and receptor pleiotropism [J]. Int J Mol Sci,
2021, 22(8): 4123.
[6] XIE J, ZHANG H, YEA K, et al. Autocrine signaling based selection
of combinatorial antibodies that transdifferentiate human stem cells
[J]. Proc Natl Acad Sci USA, 2013, 110(20): 8099-8104.
[7] ZHANG H, XIE J, LERNER R A. A proximity based general
method for identification of ligand and receptor interactions in living
cells [J]. Biochem Biophys Res Commun, 2014, 454(1): 251-255.
[8] MA P, REN P, ZHANG C, et al. Avidity-based selection of tissuespecific CAR-T cells from a combinatorial cellular library of CARs
[J]. Adv Sci, 2021, 8(6): 2003091.
[9] YANG Z, WAN Y, TAO P, et al. A cell-cell interaction format for
selection of high-affinity antibodies to membrane proteins [J]. Proc
Natl Acad Sci USA, 2019, 116(30): 14971-14978.
[10] ZHENG T, XIE J, YANG Z, et al. Antibody selection using
clonal cocultivation of Escherichia coli and eukaryotic cells in
miniecosystems [J]. Proc Natl Acad Sci USA, 2018, 115(27):
E6145-E6151.
[11] SMITH G P. Filamentous fusion phage: novel expression vectors
that display cloned antigens on the virion surface [J]. Science, 1985,
228(4705): 1315-1317.
[12] HUSE W D, SASTRY L, IVERSON S A, et al. Generation of a large
combinatorial library of the immunoglobulin repertoire in phage
lambda [J]. Science, 1989, 246(4935): 1275-1281.
[13] MCCAFFERTY J, GRIFFITHS A D, WINTER G, et al. Phage
antibodies: filamentous phage displaying antibody variable domains
[J]. Nature, 1990, 348(6301): 552-554.
[14] ALFALEH M A, ALSAAB H O, MAHMOUD A B, et al. Phage
display derived monoclonal antibodies: from bench to bedside [J].
Front Immunol, 2020, 11: 1986.
[15] JESPERS L S, ROBERTS A, MAHLER S M, et al. Guiding the
selection of human antibodies from phage display repertoires to a
single epitope of an antigen [J]. Nature Biotechnology (NY), 1994,
12(9): 899-903.
[16] EDWARDS B M, BARASH S C, MAIN S H, et al. The remarkable
flexibility of the human antibody repertoire; isolation of over one
thousand different antibodies to a single protein, BLyS [J]. J Mol
Biol, 2003, 334(1): 103-118.
[17] MAZUMDAR S. Raxibacumab [J]. MAbs, 2009, 1(6): 531-538.
[18] LU D, JIMENEZ X, ZHANG H, et al. Selection of high affinity
human neutralizing antibodies to VEGFR2 from a large antibody
phage display library for antiangiogenesis therapy [J]. Int J Cancer,
2002, 97(3): 393-399.
[19] DE HAARD H J, VAN NEER N, REURS A, et al. A large non immunized human Fab fragment phage library that permits rapid
isolation and kinetic analysis of high affinity antibodies [J]. J Biol
Chem, 1999, 274(26): 18218-18230.
[20] LI S, KUSSIE P, FERGUSON K M. Structural basis for EGF
receptor inhibition by the therapeutic antibody IMC-11F8 [J].
Structure, 2008, 16(2): 216-227.
[21] MCDERMOTT D F, SOSMAN J A, SZNOL M, et al. Atezolizumab,
an anti-programmed death-ligand 1 antibody, in metastatic renal cell
carcinoma: long-term safety, clinical activity, and immune correlates
from a phase Ia study [J]. J Clin Oncol, 2016, 34(8): 833-842.
[22] HERBST R S, SORIA J C, KOWANETZ M, et al. Predictive
correlates of response to the anti-PD-L1 antibody MPDL3280A in
cancer patients [J]. Nature, 2014, 515(7528): 563-567.
[23] BOYERINAS B, JOCHEMS C, FANTINI M, et al. Antibodydependent cellular cytotoxicity activity of a novel anti-PD-L1
antibody avelumab (MSB0010718C) on human tumor cells [J].
Cancer Immunol Res, 2015, 3(10): 1148-1157.
[24] MARKHAM A. Guselkumab: first global approval [J]. Drugs, 2017,
77(13): 1487-1492.
[25] KENNISTON J A, FAUCETTE R R, MARTIK D, et al. Inhibition
of plasma kallikrein by a highly specific active site blocking
antibody [J]. J Biol Chem, 2014, 289(34): 23596-23608.
[26] SALVATORE G, BEERS R, MARGULIES I, et al. Improved
cytotoxic activity toward cell lines and fresh leukemia cells of a
mutant anti-CD22 immunotoxin obtained by antibody phage display
[J]. Clin Cancer Res, 2002, 8(4): 995-1002.
[27] ALDERSON R F, KREITMAN R J, CHEN T, et al. CAT-8015: a
second-generation pseudomonas exotoxin A-based immunotherapy
targeting CD22-expressing hematologic malignancies [J]. Clin
Cancer Res, 2009, 15(3): 832-839.
[28] CATTANEO A, BIOCCA S. The selection of intracellular antibodies
[J]. Trends Biotechnol, 1999, 17(3): 115-121.
[29] WULFF H, CHRISTOPHERSEN P, COLUSSI P, et al. Antibodies
and venom peptides: new modalities for ion channels [J]. Nat Rev
Drug Discov, 2019, 18(5): 339-357.
[30] ALVAREZ DE LA ROSA D, CANESSA C M, FYFE G K, et al.
Structure and regulation of amiloride-sensitive sodium channels [J].
Annu Rev Physiol, 2000, 62: 573-594.
[31] QIANG M, DONG X, ZHA Z, et al. Selection of an ASIC1ablocking combinatorial antibody that protects cells from ischemic
death [J]. Proc Natl Acad Sci USA, 2018, 115(32): E7469-E7477.
[32] GOODENOUGH D A, REVEL J P. A fine structural analysis of
intercellular junctions in the mouse liver [J]. J Cell Biol, 1970,
45(2): 272-290.
[33] SRINIVAS M, VERSELIS V K, WHITE T W. Human diseases
associated with connexin mutations [J]. Biochim Biophys Acta
Biomembr, 2018, 1860(1): 192-201.
[34] GARCIA I E, MARIPILLAN J, JARA O, et al. Keratitis-ichthyosisdeafness syndrome-associated Cx26 mutants produce nonfunctional
gap junctions but hyperactive hemichannels when co-expressed with
wild type Cx43 [J]. J Invest Dermatol, 2015, 135(5): 1338-1347.
[35] XU L, CARRER A, ZONTA F, et al. Design and characterization of
a human monoclonal antibody that modulates mutant connexin 26
hemichannels implicated in deafness and skin disorders [J]. Front
Mol Neurosci, 2017, 10: 298.
[36] KUANG Y, ZORZI V, BURATTO D, et al. A potent antagonist
antibody targeting connexin hemichannels alleviates clouston
syndrome symptoms in mutant mice [J]. EBioMedicine, 2020, 57:
102825.
[37] RATHORE A S, SARKER A, GUPTA R D. Recent developments toward antibody engineering and affinity maturation [J]. Protein
Pept Lett, 2018, 25(10): 886-896.
[38] YLERA F, HARTH S, WALDHERR D, et al. Off-rate screening for
selection of high-affinity anti-drug antibodies [J]. Anal Biochem,
2013, 441(2): 208-213.
[39] FELDHAUS M J, SIEGEL R W. Yeast display of antibody
fragments: a discovery and characterization platform [J]. J Immunol
Methods, 2004, 290(1/2): 69-80.
[40] CHAO G, LAU W L, HACKEL B J, et al. Isolating and engineering
human antibodies using yeast surface display [J]. Nat Protoc, 2006,
1(2): 755-768.
[41] YANG Z, DU M, WANG W, et al. Affinity maturation of an TpoR
targeting antibody in full-length IgG form for enhanced agonist
activity [J]. Protein Eng Des Sel, 2018, 31(7/8): 233-241.
[42] SHI X, WAN Y, WANG N, et al. Selection of a picomolar antibody
that targets CXCR2-mediated neutrophil activation and alleviates
EAE symptoms [J]. Nature Communications, 2021, 12(1): 2547.
[43] TAO P, KUANG Y, LI Y, et al. Selection of a full agonist
combinatorial antibody that rescues leptin deficiency in vivo [J].
Adv Sci, 2020, 7(16): 2000818.
[44] HUTCHINGS C J, COLUSSI P, CLARK T G. Ion channels as
therapeutic antibody targets [J]. MAbs, 2019, 11(2): 265-296.
[45] HUTCHINGS C J, KOGLIN M, MARSHALL F H. Therapeutic
antibodies directed at G protein-coupled receptors [J]. MAbs, 2010,
2(6): 594-606.
[46] WANG X X, SHUSTA E V. The use of scFv-displaying yeast in
mammalian cell surface selections [J]. J Immunol Methods, 2005,
304(1/2): 30-42.
[47] TILLOTSON B J, CHO Y K, SHUSTA E V. Cells and cell lysates: a
direct approach for engineering antibodies against membrane proteins
using yeast surface display [J]. Methods, 2013, 60(1): 27-37.
[48] LERNER R A, GROVER R K, ZHANG H, et al. Antibodies from
combinatorial libraries use functional receptor pleiotropism to
regulate cell fates [J]. Q Rev Biophys, 2015, 48(4): 389-394.
[49] YEA K, XIE J, ZHANG H, et al. Selection of multiple agonist
antibodies from intracellular combinatorial libraries reveals that
cellular receptors are functionally pleiotropic [J]. Curr Opin Chem Biol, 2015, 26: 1-7.
[50] YEA K, ZHANG H, XIE J, et al. Agonist antibody that induces
human malignant cells to kill one another [J]. Proc Natl Acad Sci
USA, 2015, 112(45): E6158-E6165.
[51] ZHANG H, WILSON I A, LERNER R A. Selection of antibodies that
regulate phenotype from intracellular combinatorial antibody libraries
[J]. Proc Natl Acad Sci USA, 2012, 109(39): 15728-15733.
[52] YEA K, ZHANG H, XIE J, et al. Converting stem cells to dendritic
cells by agonist antibodies from unbiased morphogenic selections
[J]. Proc Natl Acad Sci USA, 2013, 110(37): 14966-14971.
[53] XIE J, YEA K, ZHANG H, et al. Prevention of cell death by
antibodies selected from intracellular combinatorial libraries [J].
Chemistry Biology, 2014, 21(2): 274-283.
[54] BLANCHARD J W, XIE J, EL-MECHARRAFIE N, et al. Replacing
reprogramming factors with antibodies selected from combinatorial
antibody libraries [J]. Nat Biotechnol, 2017, 35(10): 960-968.
[55] WANG Z, WU Z, LIU Y, et al. New development in CAR-T cell
therapy [J]. J Hematol Oncol, 2017, 10(1): 53.
[56] MIKKILINENI L, KOCHENDERFER J N. CAR T cell therapies
for patients with multiple myeloma [J]. Nat Rev Clin Oncol, 2021,
18(2): 71-84.
[57] ALI S A, SHI V, MARIC I, et al. T cells expressing an anti-B-cell
maturation antigen chimeric antigen receptor cause remissions of
multiple myeloma [J]. Blood, 2016, 128(13): 1688-1700.
[58] BRUDNO J N, KOCHENDERFER J N. Recent advances in CAR
T-cell toxicity: mechanisms, manifestations and management [J].
Blood Rev, 2019, 34: 45-55.
[59] DAI H, WANG Y, LU X, et al. Chimeric antigen receptors modified
T-cells for cancer therapy [J]. J Natl Cancer Inst, 2016, 108(7): 439.
[60] DRENT E, THEMELI M, POELS R, et al. A rational strategy for
reducing on-target off-tumor effects of CD38-chimeric antigen
receptors by affinity optimization [J]. Mol Ther, 2017, 25(8): 1946-
1958.
[61] LAMERS C H, LANGEVELD S C, GROOT-VAN RUIJVEN C M,
et al. Gene-modified T cells for adoptive immunotherapy of renal
cell cancer maintain transgene-specific immune functions in vivo
[J]. Cancer Immunol Immunother, 2007, 56(12): 1875-1883.
|