Chinese Journal of Nature ›› 2021, Vol. 43 ›› Issue (1): 9-17.doi: 10.3969/j.issn.0253-9608.2021.01.002
Special Issue: 智能机器人
• Invited Special Paper • Previous Articles Next Articles
Received:2020-11-27
Online:2021-02-25
Published:2021-02-25
ZHU Fangyan, CHANG Tienchong. Advances in device physics of nanomotors[J]. Chinese Journal of Nature, 2021, 43(1): 9-17.
| [1] GAO W, WANG J. The environmental impact of micro/ nanomachines: a review [J]. ACS Nano, 2014, 8(4): 3170-3180. [2] DIETRICH-BUCHECKER C O, SAUVAGE J P, KINTZINGER J P. Une nouvelle famille de molecules: les metallo-catenanes [J]. Tetrahedron Letters, 1983, 24(46): 5095-5098. [3] ANELLI P L, SPENCER N, STODDART J F. A molecular shuttle [J]. Journal of the American Chemical Society, 1991, 113(13): 5131- 5133. [4] KOUMURA N, ZIJLSTRA R W J, VAN DELDEN R A, et al. Light-driven monodirectional molecular rotor [J]. Nature, 1999, 401(6749): 152-155. [5] 刘月, 王巧纯. 分子机器研究前沿[J]. 自然杂志, 2020, 42(4): 277- 287. [6] XUE G, XU Y, DING T, et al. Water-evaporation-induced electricity with nanostructured carbon materials [J]. Nature Nanotechnology, 2017, 12(4): 317-321. [7] HILLS G, LAU C, WRIGHT A, et al. Modern microprocessor built from complementary carbon nanotube transistors [J]. Nature, 2019, 572(7771): 595-602. [8] BARABAN L, MAKAROV D, STREUBEL R, et al. Catalytic Janus motors on microfluidic chip: Deterministic motion for targeted cargo delivery [J]. ACS Nano, 2012, 6(4): 3383-3389. [9] PAVEN M, MAYAMA H, SEKIDO T, et al. Light-driven delivery and release of materials using liquid marbles [J]. Advanced Functional Materials, 2016, 26(19): 3199-3206. [10] WU Z, LIN X, WU Y, et al. Near-infrared light-triggered on/off motion of polymer multilayer rockets [J]. ACS Nano, 2014, 8(6): 6097-6105. [11] BALASUBRAMANIAN S, KAGAN D, HU C M J, et al. Micromachine-enabled capture and isolation of cancer cells incomplex media [J]. Angewandte Chemie International Edition, 2011, 50(18): 4161-4164. [12] NELSON B J, KALIAKATSOS I K, ABBOTT J J. Microrobots for minimally invasive medicine [J]. Annual Review of Biomedical Engineering, 2010, 12(1): 55-85. [13] PETERS C, HOOP M, PANÉ S, et al. Degradable magnetic composites for minimally invasive interventions: device fabrication, targeted drug delivery, and cytotoxicity tests [J]. Advanced Materials, 2016, 28(3): 533-538. [14] SIMMCHEN J, BAEZA A, MIGUEL-LOPEZ A, et al. Dynamics of novel photoactive AgCl microstars and their environmental applications [J]. ChemNanoMat, 2017, 3(1): 65-71. [15] ZHANG Z, ZHAO A, WANG F, et al. Design of a plasmonic micromotor for enhanced photo-remediation of polluted anaerobic stagnant waters [J]. Chemical Communications, 2016, 52(32): 5550- 5553. [16] GUIX M, OROZCO J, GARCIA M, et al. Superhydrophobic alkanethiol-coated microsubmarines for effective removal of oil [J]. ACS Nano, 2012, 6(5): 4445-4451. [17] MUSHTAQ F, ASANI A, HOOP M, et al. Highly efficient coaxial TiO2-PtPd tubular nanomachines for photocatalytic water purification with multiple locomotion strategies [J]. Advanced Functional Materials, 2016, 26(38): 6995-7002. [18] OROZCO J, GARCÍA-GRADILLA V, D’AGOSTINO M, et al. Artificial enzyme-powered microfish for water-quality testing [J]. ACS Nano, 2013, 7(1): 818-824. [19] KAGAN D, CALVO-MARZAL P, BALASUBRAMANIAN S, et al. Chemical sensing based on catalytic nanomotors: Motion-based detection of trace silver [J]. Journal of the American Chemical Society, 2009, 131(34): 12082-12083. [20] SU Y, GE Y, LIU L, et al. Motion-based pH sensing based on the cartridge-case-like micromotor [J]. ACS Applied Materials and Interfaces, 2016, 8(6): 4250-4257. [21] WU J, BALASUBRAMANIAN S, KAGAN D, et al. Motionbased DNA detection using catalytic nanomotors [J]. Nature Communications, 2010, 1(4): 1-6. [22] WANG J. Can man-made nanomachines compete with nature biomotors ?[J]. ACS Nano, 2009, 3(1): 4-9. doi: 10.1021/ nn800829k. [23] ZHANG L, ABBOTT J J, DONG L, et al. Characterizing the swimming properties of artificial bacterial flagella [J]. Nano Letters, 2009, 9(10): 3663-3667. [24] SING C E, SCHMID L, SCHNEIDER M F, et al. Controlled surface-induced flows from the motion of self-assembled colloidal walkers [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(2): 535-540. [25] GAO W, SATTAYASAMITSATHIT S, MANESH K M, et al. Magnetically powered flexible metal nanowire motors [J]. Journal of the American Chemical Society, 2010, 132(41): 14403-14405. [26] IBELE M, MALLOUK T E, SEN A. Schooling behavior of lightpowered autonomous micromotors in water [J]. Angewandte Chemie International Edition, 2009, 48(18): 3308-3312. [27] DONG R, ZHANG Q, GAO W, et al. Highly efficient light-driven TiO2-Au Janus micromotors [J]. ACS Nano, 2016, 10(1): 839-844. [28] WU Z, SI T, GAO W, et al. Superfast near-infrared light-driven polymer multilayer rockets [J]. Small, 2016, 12(5): 577-582. [29] WANG W, CASTRO L A, HOYOS M, et al. Autonomous motion of metallic microrods propelled by ultrasound [J]. ACS Nano, 2012, 6(7): 6122-6132. [30] KAGAN D, BENCHIMOL M J, CLAUSSEN J C, et al. Acoustic droplet vaporization and propulsion of perfluorocarbon-loaded microbullets for targeted tissue penetration and deformation [J]. Angewandte Chemie International Edition, 2012, 51(30): 7519- 7522. [31] XU T, SOTO F, GAO W, et al. Ultrasound-modulated bubble propulsion of chemically powered microengines [J]. Journal of the American Chemical Society, 2014, 136(24): 8552-8555. [32] TUZUN R E, NOID D W, SUMPTER B G. Dynamics of a laser driven molecular motor [J]. Nanotechnology, 1995, 6(2): 52-63. [33] FENNIMORE A M, YUZVINSKY T D, HAN W Q, et al. Rotational actuators based on carbon nanotubes [J]. Nature, 2003, 424(6947): 408-410. [34] REGAN B C, ALONI S, RITCHIE R O, et al. Carbon nanotubes as nanoscale mass conveyors [J]. Nature, 2004, 428(6986): 924-927. [35] GONG X, LI J, LU H, et al. A charge-driven molecular water pump [J]. Nature Nanotechnology, 2007, 2(11): 709-712. [36] SU J, GUO H. Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field [J]. ACS Nano, 2011, 5(1): 351-359. [37] SCHOEN P A E, WALTHER J H, ARCIDIACONO S, et al. Nanoparticle traffic on helical tracks: Thermophoretic mass transport through carbon nanotubes [J]. Nano Letters, 2006, 6(9): 1910-1917. [38] BARREIRO A, RURALI R, HERNÁNDEZ E R, et al. Subnanometer motion of cargoes driven by thermal gradients along carbon nanotubes [J]. Science, 2008, 320(5877): 775-778. [39] ZAMBRANO H A, WALTHER J H, KOUMOUTSAKOS P, et al. Thermophoretic motion of water nanodroplets confined inside carbon nanotubes [J]. Nano Letters, 2009, 9(1): 66-71. [40] CHENG Y, ZHANG G, ZHANG Y, et al. Large diffusion anisotropy and orientation sorting of phosphorene nanoflakes under a temperature gradient [J]. Nanoscale, 2018, 10(4): 1660-1666. [41] GUO Y, GUO W. Soliton-like thermophoresis of graphene wrinkles [J]. Nanoscale, 2013, 5(1): 318-323. [42] ENGELMANN T W. Neue methode zur untersuchung der sauerstoffausscheidung pflanzlicher und thierischer organismen [J]. Pflüger, Archiv für die Gesammte Physiologie des Menschen und der Thiere, 1881, 25(1): 285-292. [43] HONG Y, BLACKMAN N M K, KOPP N D, et al. Chemotaxis of nonbiological colloidal rods [J]. Physical Review Letters, 2007, 99(17): 1-4. [44] GIBBS J G, ZHAO Y P. Autonomously motile catalytic nanomotors by bubble propulsion [J]. Applied Physics Letters, 2009, 94(16): 3-6. [45] PAXTON W F, KISTLER K C, OLMEDA C C, et al. Catalytic nanomotors: Autonomous movement of striped nanorods [J]. Journal of the American Chemical Society, 2004, 126(41): 13424-13431. [46] ISMAGILOV R F, SCHWARTZ A, BOWDEN N, et al. Autonomous movement and self-assembly [J]. Angewandte Chemie International Edition, 2002, 41(4): 652-654. [47] SOLOVEV A A, XI W, GRACIAS D H, et al. Self-propelled nanotools [J]. ACS Applied Nano Materials, 2012, 6(2): 1751-1756. [48] LV C, CHEN C, YIN Y, et al. Surface curvature-induced directional movement of water droplets [EB/OL]. arXiv:1011.3689, 2010. (2010-11-16)[2020-11-25]. https://arxiv.org/abs/1011.3689. [49] DAI C, GUO Z, ZHANG H, et al. A nanoscale linear-to-linear motion converter of graphene [J]. Nanoscale, 2016, 8(30): 14406- 14410. [50] BARNARD A S. Nanoscale locomotion without fuel [J]. Nature, 2015, 519(7541): 37-38. [51] CHEN L, CHEN S, GAO H. Biomimetic study of rolling transport through smooth muscle contraction [J]. Colloids and Surfaces B: Biointerfaces, 2014, 123: 49-52. [52] HU Y, LENG J, CHANG T. Mechanosensing of a graphene flake on a bent beam [J]. Journal of Applied Mechanics, 2021, 88(4): 041004. https://doi.org/10.1115/1.4049167. [53] LENG J, HU Y, CHANG T. Nanoscale directional motion by angustotaxis [J]. Nanoscale, 2020, 12(9): 5308-5312. [54] 殷雅俊. 生物膜力学与几何中的对称[J]. 力学与实践, 2008(2): 5-14. [55] LV C, CHEN C, CHUANG Y, et al. Substrate curvature gradient drives rapid droplet motion [J]. Physical Review Letters, 2014, 113: 026101. [56] CHANG T, ZHANG H, GUO Z, et al. Nanoscale directional motion towards regions of stiffness [J]. Physical Review Letters, 2015, 114(1): 1-5. [57] CHEN L, CHEN S. Rolling motion of an elastic cylinder induced by elastic strain gradients [J]. Journal of Applied Physics, 2014, 116(16): 164701. [58] WANG C, CHEN S. Motion driven by strain gradient fields [J]. Scientific Reports, 2015, 5: 13675. doi: 10.1038/srep13675. [59] ZHANG B, LIAO X, CHEN Y, et al. Rapid programmable nanodroplet motion on a strain-gradient surface [J]. Langmuir, 2019, 35: 2865-2870. |
| [1] | CHEN Xiao, XUE Jingshi, YANG Zhongnan. Studies on the composition and structure of plant sporopollenin [J]. Chinese Journal of Nature, 2025, 47(5): 373-380. |
| [2] | MA Yiying, HOU Xinghui, LI Chaobin. Unraveling the molecular basis of pollination syndrome shifts in angiosperms [J]. Chinese Journal of Nature, 2025, 47(5): 381-395. |
| [3] | SONG Aiguo, YIN Mingyang. Dual-arm teleoperation technology for humanoid robots [J]. Chinese Journal of Nature, 2025, 47(5): 350-359. |
| [4] | WANG Min, ZHANG Yang, LIANG Qian, QUAN Ran, XIAO Cai, ZHANG Di, KONG Yihang, WANG Rui, FU Shibo. Development status and frontier applications of stewart parallel intelligent robots [J]. Chinese Journal of Nature, 2025, 47(5): 360-372. |
| [5] | ZHANG Hui, KONG Chuiwang, LI Kang, CHEN Weili, CHEN Bo, FAN Yexin, JIANG Yiming, WANG Yaonan. Research progress of intelligent dual-arm robots and key technologies for pharmaceutical dispensing [J]. Chinese Journal of Nature, 2025, 47(5): 330-349. |
| [6] | XIANG Yangjian, ZOU He, XU Bo, WEI Yunlin. Application potential of hypovirulence-associated mycovirus in plant disease control [J]. Chinese Journal of Nature, 2025, 47(5): 412-418. |
| [7] | ZHANG Liming, LI Juzhen, ZHU Yibin, CHENG Gong. Intervention of symbiotic bacteria in the environment blocks the transmission of mosquito-borne viruses [J]. Chinese Journal of Nature, 2025, 47(5): 323-329. |
| [8] | YIN Hui, LI Xia. Perseverance and beauty: the crystal life of Dorothy Crawford Hodgkin [J]. Chinese Journal of Nature, 2025, 47(4): 316-322. |
| [9] | GUO Xiaoqiang, GUO Beiyi. Life is electrical: From bioelectricity to ion channels [J]. Chinese Journal of Nature, 2025, 47(4): 303-315. |
| [10] | JIANG Rubin, LIU Dongxia, YUAN Shanfeng, ZHANG Hongbo, WU Xueke. Thunderstorm electricity and rocket triggering lightning [J]. Chinese Journal of Nature, 2025, 47(4): 249-260. |
| [11] | ZHANG Wenxia, YU Yan, GUI Kexin, ZHOU Tianjun. Climate change and wildfires [J]. Chinese Journal of Nature, 2025, 47(4): 261-269. |
| [12] | HE Zhechen, LIU Nuohang, PEI Ziyue, SHI Hongrong, GE Baozhu, WANG Zifa. Assessment of the impact of dry deposition of particulate matter on photovoltaic resources [J]. Chinese Journal of Nature, 2025, 47(4): 270-280. |
| [13] | DAI Wen, PEI Tiantian, QIAO Junyi, FANG Rongwei, XI Jinyang. Theoretical study of the effects of chalcogen substitution and double-layer stacking on the electronic structure and mobility in two-dimensional TMDs PtS2 [J]. Chinese Journal of Nature, 2025, 47(4): 294-302. |
| [14] | ZHAO Jing, ZHANG Juan, CHEN Guifang, CAO Ya, LI Genxi. Advances in biosensing technology targeting life and health [J]. Chinese Journal of Nature, 2025, 47(3): 172-182. |
| [15] | FU Yongbo, XIANG Huijing. A new era in cancer phototherapy: development, mechanisms and applications [J]. Chinese Journal of Nature, 2025, 47(3): 190-195. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||