自然杂志 ›› 2020, Vol. 42 ›› Issue (2): 79-83.doi: 10.3969/j.issn.0253-9608.2020.02.001

• 特约专稿 •    下一篇

二维冰的结构及其生长机制研究进展

管冬,江颖   

  1. 北京大学 物理学院量子材料科学中心,北京 100871
  • 收稿日期:2020-01-16 出版日期:2020-04-25 发布日期:2020-04-18
  • 作者简介:江颖,通信作者,国家杰出青年科学基金获得者,研究方向:表面科学、扫描探针显微学、单分子物理化学、二维 材料、原子尺度上的物性及非平衡超快动力学过程。

New insights into the structure and growth of two-dimensional hexagonal ice

GUAN Dong, JIANG Ying   

  1. International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
  • Received:2020-01-16 Online:2020-04-25 Published:2020-04-18

摘要: 水和冰在自然界中广泛存在,冰的结构与成核生长在材料科学、摩擦学、生物学、大气科学以及行星科学等众多领域具有至关重要的作用,这些过程往往与微观尺度上水分子与表面或者水分子之间的相互作用相关。受限于之前的研究方法和手段,尽管存在大量的实验和理论研究,冰成核和生长的微观机理却仍旧存在许多争议与疑问。因此,从原子尺度上对冰结构和成核生长过程进行准确的表征和研究具有极为重要的意义。研究者利用超高真空低温扫描隧道显微镜(STM)和非接触式原子力显微镜(NC-AFM)联合系统,通过对qPlus针尖进行化学修饰,借助针尖与水分子之间的高阶静电力,成功实现在实空间中对Au(111)表面上的双层二维冰结构的高分辨成像,确认了其“互锁式”氢键构型,并进一步通过对二维冰边界结构的非侵扰式成像,首次观测到二维冰生长过程中边界上的一系列中间态和亚稳态。之后通过结合第一性原理计算和分子动力学模拟,提出了二维冰锯齿状和扶椅状边界的两种生长机制。这在原子尺度上揭示了二维冰成核生长的过程和机理,为研究原子尺度上冰的生长过程提供了一种新途径,并能拓展到广泛的二维材料体系研究中。

关键词: 二维冰, 边界生长, 非接触原子力显微镜

Abstract: Water and ice are ubiquitous in nature. The structure and growth of ice play critical roles in an incredibly broad spectrum of materials science, tribology, biology, atmospheric science, and planetary science. Addressing those issues requires the atomicscale
understanding of the interaction between water molecules and substrate as well as that between water molecules. Limited by
the theoretical methods and experimental techniques, the microscopic picture of ice nucleation and growth still remains under debate despite of enormous scientific efforts in the past decades. Thus, the precise description of ice nucleation and growth at atomic scale is of crucial importance. Using a combined system of low-temperature scanning tunneling microscope (STM) and non-contact atomic force microscope (NC-AFM), we succeed in achieving atomic resolution of a 2D ice on Au(111) and confirming its interlocked flat bilayer structure in real space with a CO-decorated qPlus-tip, which further allows us to deduce the growth process of the 2D
ice. Through weakly perturbative AFM imaging of the 2D ice edges, we observed the intermediate and metastable states during the growing process of the 2D ice for the first time. Combined with the first principle calculations and molecular dynamics simulations, we proposed two different growth mechanisms for zigzag and armchair edges. This work provides techniques and methods applicable to investigate the growth mechanism of a large family of 2D materials other than 2D ices, thus opening up a new avenue of visualizing the structure and dynamics of low-dimensional matter at the cutting edges.