自然杂志 ›› 2023, Vol. 45 ›› Issue (1): 45-53.doi: 10.3969/j.issn.0253-9608.2023.01.005

• 专题综述 • 上一篇    下一篇

光镊与DNA纳米技术在膜生物学研究中的应用

林小娜①②,石丽君,叶杨,王云云,马璐,杨洋,边鑫   

  1. ①上海大学 生命科学学院,上海 200444;②上海交通大学医学院 附属仁济医院,分子医学研究院,上海200127;③中国科学院物理研究所 软物质物理重点实验室,北京 100190;④南开大学 药物化学生物学国家重点实验室/细胞应答交叉科学中心/生命科学学院,天津 300071
  • 收稿日期:2022-06-24 出版日期:2023-02-25 发布日期:2023-02-21
  • 通讯作者: 马璐,研究方向:利用单分子技术研究蛋白的结构功能性质。 杨洋,研究方向:核酸纳米结构自组装的拓扑学、动力学、功能化研究,及其应用于调控肿瘤代谢和肿瘤免疫微环境等。 边鑫,研究方向:生物膜塑形和脂质代谢的调控机制与生理功能。

Applications of optical tweezers and DNA nanotechnology in membrane biology

LIN Xiaona①②, SHI Lijun, YE Yang, WANG Yunyun, MA Lu, YANG Yang, BIAN Xin   

  1. ①School of Life Sciences, Shanghai University, Shanghai 200444, China; ②Institute of Molecular Medicine, Renji Hospital, School
    of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; ③National Laboratory for Condensed Matter Physics and
    Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; ④State Key
    Laboratory of Medicinal Chemical Biology/Frontiers Science Center for Cell Responses/College of Life Sciences, Nankai University,
    Tianjin 300071, China
  • Received:2022-06-24 Online:2023-02-25 Published:2023-02-21

摘要: 生物膜是生命活动中信号传导和物质运输的平台。近年来,多学科的交叉应用为膜蛋白介导的膜融合与分裂、囊泡形成与分泌,以及脂质代谢的调控机制等膜生物学研究带来了新的信息。例如,单分子光镊力谱方法通过精准、定量地检测蛋白与膜的相互作用,为在时空维度上理解这一生物过程的复杂调控机制提供了强有力的手段。此外,DNA纳米技术通过构建纳米尺度可编程的自组装结构,提供了可精确修饰与功能化的分子器件。经过疏水修饰的核酸纳米器件可以作用于磷脂膜或生物膜,进而对膜进行表面改性、诱导形变、控制理化参数以及跨膜通信等调控操作。该领域的进步将为细胞生物学机制研究、分泌囊泡的分析检测、人工脂质体的制备优化、新型分子载具开发以及新型药物开发提供特色的工具手段,并构建新颖的体系平台助力合成生物学、化学生物学以及分子医学的发展。

关键词: 光镊, DNA纳米技术, 生物膜, 脂质体, 膜蛋白

Abstract:

Biological membranes are platforms for signal transduction and material transport in cellular activities. In recent years, the applications of multidisciplinary approaches have shed new lights on the mechanisms of membrane protein-mediated membrane fusion and division, vesicle formation and secretion, and lipid metabolism etc. For example, the single-molecule optical tweezers, which accurately and quantitatively detect the interactions between proteins and membranes, provide a powerful approach to understand the regulatory mechanisms of such interactions at spatiotemporal level. In addition, DNA nanotechnology, which uses DNA molecules to construct programmable and self-assembled nanostructures, provides molecular devices that can be precisely modified and functionalized. The hydrophobically modified DNA nanostructures can act on phopholipid bilayers or biological membranes to modify lipid properties, modulate membrane structures, control membrane parameters and regulate transmembrane communications. The advances in these techniques will contribute to the mechanistic study of cell biology, the analysis and detection of secretory vesicles, the optimization of artificial liposome preparation, and the development of new drugs and carriers. These techniques will also provide novel systems for synthetic biology, chemical biology, and molecular medicine.