[1] MERCHANT A, BATZNER S, SCHOENHOLZ S S, et al. Scaling deep learning for materials discovery [J]. Nature, 2023, 624(7990):
80-85.
[2] SZYMANSKI N J, RENDY B, FEI Y, et al. An autonomous laboratory for the accelerated synthesis of novel materials [J]. Nature, 2023, 624(7990): 86-91.
[3] BURGER B, MAFFETTONE P M, GUSEV V V, et al. A mobile robotic chemist [J]. Nature, 2020, 583(7815): 237-241.
[4] MEHR S H M, CRAVEN M, LEONOV A I, et al. A universal system for digitization and automatic execution of the chemical synthesis literature [J]. Science, 2020, 370(6512): 101-108.
[5] LECUN Y, BENGIO Y, HINTON G. Deep learning [J]. Nature, 2015, 521(7553): 436-444.
[6] BOND-TAYLOR S, LEACH A, LONG Y, et al. Deep generative modelling: A comparative review of VAEs, GANs, normalizing
flows, energy-based and autoregressive models [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022,
44(11): 7327-7347.
[7] SAEED W, OMLIN C. Explainable AI (XAI): A systematic meta-survey of current challenges and future opportunities [J]. Knowledge-Based Systems, 2023, 263: 110273.
[8] 朱宏伟. 二维材料在人工智能中的应用[J]. 自然杂志, 2022, 44(6): 466-468.
[9] 朱宏伟. 6G时代的新材料[J]. 自然杂志, 2023, 45(2): 109-112.
[10] KASPAR C, RAVOO B J, VAN DER WIEL W G, et al. The rise of intelligent matter [J]. Nature, 2021, 594(7863): 345-355.
|