自然杂志 ›› 2025, Vol. 47 ›› Issue (6): 454-460.doi: 10.3969/j.issn.0253-9608.2025.06.005

所属专题: 诺贝尔物理学奖简介文章

• 诺贝尔奖简介 • 上一篇    下一篇

他们抓住了“薛定谔的猫”——2025年诺贝尔物理学奖与宏观量子奇迹

杨磊,周士杰,丁泳程②③,江奕骏
  

  1. ①上海大学 理学院物理系,上海 200444;②西班牙巴斯克大学 物理化学系,毕尔巴鄂 E-48080;③狄拉克量子科技(上海)有限公司,上海 200240
  • 收稿日期:2025-11-10 出版日期:2025-12-25 发布日期:2025-12-18

They captured “Schrödinger’s Cat”: The 2025 Nobel Prize in Physics and the macroscopic quantum miracle

YANG Lei, ZHOU Shijie, DING Yongcheng②③, JIANG Yijun
  

  1. ① Department of Physics, College of Sciences, Shanghai University, Shanghai 200444, China; ② Department of Physical Chemistry, University of the Basque Country, E-48080 Bilbao, Spain; ③ Dirac Quantum Technology (Shanghai) Co., Ltd., Shanghai 200240, China
  • Received:2025-11-10 Online:2025-12-25 Published:2025-12-18

摘要:

2025年诺贝尔物理学奖授予约翰•克拉克(John Clarke)、米歇尔•德沃雷(Michel H. Devoret)和约翰•马蒂尼斯(John M. Martinis),以表彰他们在宏观电路中首次实验发现“量子隧穿”与“能量量子化”的奠基性贡献。他们的研究将著名的“薛定谔的猫”思想实验变为现实。通过厘米尺度的超导电路,他们成功捕捉到由数十亿电子对协同形成的宏观量子叠加态。实验不仅观测到该宏观系统如拥有“穿墙术”般穿越经典势垒(量子隧穿),并揭示其能量如楼梯台阶般是分立的(能量量子化)。这项工作彻底打破了量子现象仅存在于微观世界的界限,为超导量子计算技术奠定了坚实的物理与实验基础。如今,以他们开创的约瑟夫森结为核心构建的量子比特,正驱动着谷歌、IBM等公司的量子处理器,标志着人类从“观察量子”迈向“建造量子”的新时代。

关键词:

Abstract:

The 2025 Nobel Prize in Physics is awarded to John Clarke, Michel H. Devoret, and John M. Martinis for their groundbreaking experiments that led to the first observation of macroscopic quantum tunneling and energy quantization in an electrical circuit. Their work brought the famous thought experiment of “Schrödinger’s cat” to life. Using a centimeter-sized superconducting circuit, they successfully captured a macroscopic quantum superposition state composed of billions of collaboratively acting electron pairs. Their experiments not only demonstrated this macroscopic system tunneling through a classically impenetrable energy barrier but also revealed that its energy existed in discrete, staircase-like levels. This achievement fundamentally challenged the boundary that quantum phenomena are confined to the microscopic world. Furthermore, it laid the essential physical and experimental foundation for superconducting quantum computing technology. Today, the quantum bits (qubits) at the heart of quantum processors developed by companies like Google and IBM are built upon the Josephson junctions they pioneered, marking humanity’s transition from observing the quantum world to engineering it.