特约专稿

纳米马达的驱动机理研究进展

展开
  • 上海大学 力学与工程科学学院,上海市应用数学和力学研究所,上海 200072

收稿日期: 2020-11-27

  网络出版日期: 2021-02-25

基金资助

国家自然科学基金项目(11425209、11872238)、上海市教委创新重大项目(2017-01-07-00-09-E00019)和上海市优秀学术带头人计划(19XD1401500)

Advances in device physics of nanomotors

Expand
  • Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, China

Received date: 2020-11-27

  Online published: 2021-02-25

摘要

纳米马达是一种将其他形式能量转化为机械能从而产生定向运动的纳米机器。文章概要介绍了不同种类纳米马达驱动 机理的研究现状,简略分析了纳米马达在实际应用中存在的困难,并对未来的发展趋势进行初步展望。

本文引用格式

朱芳艳, 张田忠 . 纳米马达的驱动机理研究进展[J]. 自然杂志, 2021 , 43(1) : 9 -17 . DOI: 10.3969/j.issn.0253-9608.2021.01.002

Abstract

As one of nanoscale energy conversion devices, nanomotors can realize directional motion by transforming other forms of energy into mechanical energy. This article presents a brief review on recent advances in device physics of nanomotors, with a concise discussion about their limitations in practical applications and a preliminary prospect of the field. 

参考文献

[1] GAO W, WANG J. The environmental impact of micro/ nanomachines: a review [J]. ACS Nano, 2014, 8(4): 3170-3180. 

[2] DIETRICH-BUCHECKER C O, SAUVAGE J P, KINTZINGER J P. Une nouvelle famille de molecules: les metallo-catenanes [J]. Tetrahedron Letters, 1983, 24(46): 5095-5098. 

[3] ANELLI P L, SPENCER N, STODDART J F. A molecular shuttle [J]. Journal of the American Chemical Society, 1991, 113(13): 5131- 5133. 

[4] KOUMURA N, ZIJLSTRA R W J, VAN DELDEN R A, et al. Light-driven monodirectional molecular rotor [J]. Nature, 1999, 401(6749): 152-155.

 [5] 刘月, 王巧纯. 分子机器研究前沿[J]. 自然杂志, 2020, 42(4): 277- 287. 

[6] XUE G, XU Y, DING T, et al. Water-evaporation-induced electricity with nanostructured carbon materials [J]. Nature Nanotechnology, 2017, 12(4): 317-321. 

[7] HILLS G, LAU C, WRIGHT A, et al. Modern microprocessor built from complementary carbon nanotube transistors [J]. Nature, 2019, 572(7771): 595-602. 

[8] BARABAN L, MAKAROV D, STREUBEL R, et al. Catalytic Janus motors on microfluidic chip: Deterministic motion for targeted cargo delivery [J]. ACS Nano, 2012, 6(4): 3383-3389.

[9] PAVEN M, MAYAMA H, SEKIDO T, et al. Light-driven delivery and release of materials using liquid marbles [J]. Advanced Functional Materials, 2016, 26(19): 3199-3206. 

[10] WU Z, LIN X, WU Y, et al. Near-infrared light-triggered on/off motion of polymer multilayer rockets [J]. ACS Nano, 2014, 8(6): 6097-6105. 

[11] BALASUBRAMANIAN S, KAGAN D, HU C M J, et al. Micromachine-enabled capture and isolation of cancer cells incomplex media [J]. Angewandte Chemie International Edition, 2011, 50(18): 4161-4164.

[12] NELSON B J, KALIAKATSOS I K, ABBOTT J J. Microrobots for minimally invasive medicine [J]. Annual Review of Biomedical Engineering, 2010, 12(1): 55-85. 

[13] PETERS C, HOOP M, PANÉ S, et al. Degradable magnetic composites for minimally invasive interventions: device fabrication, targeted drug delivery, and cytotoxicity tests [J]. Advanced Materials, 2016, 28(3): 533-538. 

[14] SIMMCHEN J, BAEZA A, MIGUEL-LOPEZ A, et al. Dynamics of novel photoactive AgCl microstars and their environmental applications [J]. ChemNanoMat, 2017, 3(1): 65-71. 

[15] ZHANG Z, ZHAO A, WANG F, et al. Design of a plasmonic micromotor for enhanced photo-remediation of polluted anaerobic stagnant waters [J]. Chemical Communications, 2016, 52(32): 5550- 5553.

 [16] GUIX M, OROZCO J, GARCIA M, et al. Superhydrophobic alkanethiol-coated microsubmarines for effective removal of oil [J]. ACS Nano, 2012, 6(5): 4445-4451. 

[17] MUSHTAQ F, ASANI A, HOOP M, et al. Highly efficient coaxial TiO2-PtPd tubular nanomachines for photocatalytic water purification with multiple locomotion strategies [J]. Advanced Functional Materials, 2016, 26(38): 6995-7002. 

[18] OROZCO J, GARCÍA-GRADILLA V, D’AGOSTINO M, et al. Artificial enzyme-powered microfish for water-quality testing [J]. ACS Nano, 2013, 7(1): 818-824. 

[19] KAGAN D, CALVO-MARZAL P, BALASUBRAMANIAN S, et al. Chemical sensing based on catalytic nanomotors: Motion-based detection of trace silver [J]. Journal of the American Chemical Society, 2009, 131(34): 12082-12083. 

[20] SU Y, GE Y, LIU L, et al. Motion-based pH sensing based on the cartridge-case-like micromotor [J]. ACS Applied Materials and Interfaces, 2016, 8(6): 4250-4257.

 [21] WU J, BALASUBRAMANIAN S, KAGAN D, et al. Motionbased DNA detection using catalytic nanomotors [J]. Nature Communications, 2010, 1(4): 1-6. 

[22] WANG J. Can man-made nanomachines compete with nature biomotors ?[J]. ACS Nano, 2009, 3(1): 4-9. doi: 10.1021/ nn800829k. 

[23] ZHANG L, ABBOTT J J, DONG L, et al. Characterizing the swimming properties of artificial bacterial flagella [J]. Nano Letters, 2009, 9(10): 3663-3667. 

[24] SING C E, SCHMID L, SCHNEIDER M F, et al. Controlled surface-induced flows from the motion of self-assembled colloidal walkers [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(2): 535-540.

[25] GAO W, SATTAYASAMITSATHIT S, MANESH K M, et al. Magnetically powered flexible metal nanowire motors [J]. Journal of the American Chemical Society, 2010, 132(41): 14403-14405. 

[26] IBELE M, MALLOUK T E, SEN A. Schooling behavior of lightpowered autonomous micromotors in water [J]. Angewandte Chemie International Edition, 2009, 48(18): 3308-3312.

[27] DONG R, ZHANG Q, GAO W, et al. Highly efficient light-driven TiO2-Au Janus micromotors [J]. ACS Nano, 2016, 10(1): 839-844.

[28] WU Z, SI T, GAO W, et al. Superfast near-infrared light-driven polymer multilayer rockets [J]. Small, 2016, 12(5): 577-582.

 [29] WANG W, CASTRO L A, HOYOS M, et al. Autonomous motion of metallic microrods propelled by ultrasound [J]. ACS Nano, 2012, 6(7): 6122-6132.

[30] KAGAN D, BENCHIMOL M J, CLAUSSEN J C, et al. Acoustic droplet vaporization and propulsion of perfluorocarbon-loaded microbullets for targeted tissue penetration and deformation [J]. Angewandte Chemie International Edition, 2012, 51(30): 7519- 7522.

[31] XU T, SOTO F, GAO W, et al. Ultrasound-modulated bubble propulsion of chemically powered microengines [J]. Journal of the American Chemical Society, 2014, 136(24): 8552-8555.

[32] TUZUN R E, NOID D W, SUMPTER B G. Dynamics of a laser driven molecular motor [J]. Nanotechnology, 1995, 6(2): 52-63.

 [33] FENNIMORE A M, YUZVINSKY T D, HAN W Q, et al. Rotational actuators based on carbon nanotubes [J]. Nature, 2003, 424(6947): 408-410.

 [34] REGAN B C, ALONI S, RITCHIE R O, et al. Carbon nanotubes as nanoscale mass conveyors [J]. Nature, 2004, 428(6986): 924-927.

 [35] GONG X, LI J, LU H, et al. A charge-driven molecular water pump [J]. Nature Nanotechnology, 2007, 2(11): 709-712.

 [36] SU J, GUO H. Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field [J]. ACS Nano, 2011, 5(1): 351-359. 

[37] SCHOEN P A E, WALTHER J H, ARCIDIACONO S, et al. Nanoparticle traffic on helical tracks: Thermophoretic mass transport through carbon nanotubes [J]. Nano Letters, 2006, 6(9): 1910-1917.

 [38] BARREIRO A, RURALI R, HERNÁNDEZ E R, et al. Subnanometer motion of cargoes driven by thermal gradients along carbon nanotubes [J]. Science, 2008, 320(5877): 775-778. 

[39] ZAMBRANO H A, WALTHER J H, KOUMOUTSAKOS P, et al. Thermophoretic motion of water nanodroplets confined inside carbon nanotubes [J]. Nano Letters, 2009, 9(1): 66-71. 

[40] CHENG Y, ZHANG G, ZHANG Y, et al. Large diffusion anisotropy and orientation sorting of phosphorene nanoflakes under a temperature gradient [J]. Nanoscale, 2018, 10(4): 1660-1666. 

[41] GUO Y, GUO W. Soliton-like thermophoresis of graphene wrinkles [J]. Nanoscale, 2013, 5(1): 318-323. 

[42] ENGELMANN T W. Neue methode zur untersuchung der sauerstoffausscheidung pflanzlicher und thierischer organismen [J]. Pflüger, Archiv für die Gesammte Physiologie des Menschen und der Thiere, 1881, 25(1): 285-292.

 [43] HONG Y, BLACKMAN N M K, KOPP N D, et al. Chemotaxis of nonbiological colloidal rods [J]. Physical Review Letters, 2007, 99(17): 1-4. 

[44] GIBBS J G, ZHAO Y P. Autonomously motile catalytic nanomotors  by bubble propulsion [J]. Applied Physics Letters, 2009, 94(16): 3-6. 

[45] PAXTON W F, KISTLER K C, OLMEDA C C, et al. Catalytic nanomotors: Autonomous movement of striped nanorods [J]. Journal of the American Chemical Society, 2004, 126(41): 13424-13431.

[46] ISMAGILOV R F, SCHWARTZ A, BOWDEN N, et al. Autonomous movement and self-assembly [J]. Angewandte Chemie International Edition, 2002, 41(4): 652-654. 

[47] SOLOVEV A A, XI W, GRACIAS D H, et al. Self-propelled nanotools [J]. ACS Applied Nano Materials, 2012, 6(2): 1751-1756.

 [48] LV C, CHEN C, YIN Y, et al. Surface curvature-induced directional movement of water droplets [EB/OL]. arXiv:1011.3689, 2010. (2010-11-16)[2020-11-25]. https://arxiv.org/abs/1011.3689.

 [49] DAI C, GUO Z, ZHANG H, et al. A nanoscale linear-to-linear motion converter of graphene [J]. Nanoscale, 2016, 8(30): 14406- 14410.

 [50] BARNARD A S. Nanoscale locomotion without fuel [J]. Nature, 2015, 519(7541): 37-38. 

[51] CHEN L, CHEN S, GAO H. Biomimetic study of rolling transport through smooth muscle contraction [J]. Colloids and Surfaces B: Biointerfaces, 2014, 123: 49-52. 

[52] HU Y, LENG J, CHANG T. Mechanosensing of a graphene flake on a bent beam [J]. Journal of Applied Mechanics, 2021, 88(4): 041004. https://doi.org/10.1115/1.4049167.

 [53] LENG J, HU Y, CHANG T. Nanoscale directional motion by angustotaxis [J]. Nanoscale, 2020, 12(9): 5308-5312. 

[54] 殷雅俊. 生物膜力学与几何中的对称[J]. 力学与实践, 2008(2): 5-14. 

[55] LV C, CHEN C, CHUANG Y, et al. Substrate curvature gradient drives rapid droplet motion [J]. Physical Review Letters, 2014, 113: 026101.

 [56] CHANG T, ZHANG H, GUO Z, et al. Nanoscale directional motion towards regions of stiffness [J]. Physical Review Letters, 2015, 114(1): 1-5. 

[57] CHEN L, CHEN S. Rolling motion of an elastic cylinder induced by elastic strain gradients [J]. Journal of Applied Physics, 2014, 116(16): 164701.

[58] WANG C, CHEN S. Motion driven by strain gradient fields [J]. Scientific Reports, 2015, 5: 13675. doi: 10.1038/srep13675. 

[59] ZHANG B, LIAO X, CHEN Y, et al. Rapid programmable nanodroplet motion on a strain-gradient surface [J]. Langmuir, 2019, 35: 2865-2870.

文章导航

/