专题综述

光合作用放氧反应

展开
  • 中国科学院化学研究所 光化学实验室,北京 100190

收稿日期: 2021-05-26

  网络出版日期: 2021-06-13

基金资助

国家自然科学基金项目(31770258、91961203)

Photosynthetic oxygen-evolving reaction

Expand
  • Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

Received date: 2021-05-26

  Online published: 2021-06-13

摘要

光合作用放氧中心(OEC)是植物光系统II(PSII)中利用太阳能高效、安全地将水氧化,释放出电子、质子和氧气的生物催化剂。OEC的合成、结构和催化机理及其仿生模拟一直是光合领域广受关注的研究热点和难点。近年PSII高分辨率晶体结构研究揭示出OEC是一个特殊的Mn4CaO5 簇合物,这一重要进展使人类可以在原子水平上探讨光合放氧反应的微观机理,同时也为OEC的人工合成提供了重要依据。我们近年来成功合成出结构和理化性能均与生物OEC类似的系列仿生Mn4CaO4簇合物,为研究OEC的微观机理提供了理想的化学模型,同时也为发展高效、廉价人工光合作用水裂解催化剂奠定了基础。目前无论是自然光合放氧研究,还是人工光合放氧研究都有大量重要的科学问题亟待深入研究。

本文引用格式

张纯喜 . 光合作用放氧反应[J]. 自然杂志, 2021 , 43(3) : 199 -208 . DOI: 10.3969/j.issn.0253-9608.2021.03.005

Abstract

Photosynthetic oxygen-evolving center in photosystem II (PSII) of plant is a unique biological catalyst that catalyzes the water oxidation into electrons, protons and dioxygen in high efficiency and high safety using solar energy. Its synthesis, structure and
catalytic mechanism are great challenge in photosynthetic research. Recently, the high-resolution crystal structure of PSII has revealed the detailed structure of the unique Mn4CaO5-cluster of this natural catalyst. This advance provides a solid basis for the further investigation of the catalytic mechanism of photosynthetic oxygen-evolving reaction at an atom level, which is also a blueprint for the chemical synthesis of the OEC in laboratory. We have succeeded in synthesizing a series of artificial Mn4CaO4-clusters that closely mimic both the structure and physicochemical properties of the natural OEC in PSII. These synthetic Mn4CaO4-clusters provide a good chemical model to investigate the catalytic mechanism of the OEC and open a new direction for the development of high efficiency and low-cost artificial catalysts for the water-splitting reaction in future. Notably, there are still many scientific questions urgent to be answered in both natural and artificial photosynthetic oxygen evolution.

参考文献

[1] BARBER J. Photosynthetic energy conversion: natural and artificial [J]. Chem Soc Rev, 2009, 38: 185-196.
[2] DAU H, ZAHARIEVA I. Principles, efficiency and blueprint character of solar-energy conversion in photosynthetic water
oxidation [J]. Acc Chem Res, 2009, 42: 1861-1870.
[3] JUNGE W. Oxygenic photosynthesis: history, status and perspective [J]. Quart Rev Biophys, 2019, 52: e1.
[4] CARDONA T, RUTHERFORD A W. Evolution of photochemical reaction centres: more twists?[J]. Trends in Plant Science, 2019, 24: 1008-1021.
[5] BARBER J. Solar-driven water-splitting provides a solution to the energy problem underpinning climate change [J]. Biochem Soc Trans, 2020, 48: 2865-2874.
[6] 张纯喜. 从自然光合作用到人工光合作用[J]. 中国科学: 化学, 2016, 46: 1101-1109.
[7] COX N, PANTAZIS D A, LUBITZ W. Current understanding of the mechanism of water oxidation in photosystem II and its relation to XFEL data [J]. Annu Rev Biochem, 2020, 89: 795-820.
[8] LI Y, YAO R, CHEN Y, et al. Mimicking the catalytic center for the water-splitting reaction in photosystem II [J]. Catalysts, 2020, 10: 185. DOI: 10.3390/catal10020185.
[9] ZOUNI A, WITT H T, KERN J, et al. Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution
[J]. Nature, 2001, 409: 739-743.
[10] FERREIRA K N, IVERSON T M, MAGHLAOUI K, et al. Architecture of the photosynthetic oxygen-evolving center [J].
Science, 2004, 303: 1831-1838.
[11] UMENA Y, KAWAKAMI K, SHEN J R, et al. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9Å [J]. Nature, 2011, 473: 55-60.
[12] SUGA M, AKITA F, HIRATA K, et al. Native structure of photosystem II at 1.95Å resolution revealed by a femtosecond X-ray
laser [J]. Nature, 2015, 517: 99-103.
[13] YOUNG I D, IBRAHIM M, CHATTERJEE R, et al. Structure of photosystem II and substrate binding at room temperature [J].
Nature, 2016, 540: 453-457.
[14] SHEN J R. The structure of photosystem II and the mechanism of water oxidation in photosynthesis [J]. Annu Rev Plant Biol, 2015, 66: 23-48.

[15] RENGER G, HOLZWARTH A R. Primary electron transfer [M]// WYDRZYNSKI T J, SATOH K(eds). Photosystem II: The Light-
Driven Water: Plastoquinone Oxidoreductase. Dordrecht, The Netherlands: Springer, 2005: 139-175.
[16] RAPPAPORT F, DINER B A. Primary photochemistry and energetics leading to the oxidation of the Mn4Ca cluster and to the evolution of molecular oxygen in photosystem II [J]. Coord Chem Rev, 2008, 252: 259-272.
[17] STYRING S, SJÖHOLM J, MAMEDOV F. Two tyrosines that changed the world: Interfacing the oxidizing power of photochemistry to water splitting in photosystem II [J]. Biochim Biophys Acta, 2012, 1817: 76-87.
[18] BAO H, ZHANG C, REN Y, et al. Low-temperature electron transfer suggests two types of QA in intact photosystem II [J]. Biochim Biophys Acta, 2010, 1797: 339-346.
[19] ZHANG C, BOUSSAC A, RUTHERFORD A W. Low-temperature electron transfer in photosystem II: A tyrosyl radical and
semiquinone charge pair [J]. Biochemistry, 2004, 43: 13787-13795.
[20] ZHANG C, STYRING S. Formation of split electron paramagnetic resonance signals in photosystem II suggests that tyrosinez can be photooxidized at 5 K in the S0 and S1 states of the oxygen-evolving complex [J]. Biochemistry, 2003, 42: 8066-8076.
[21] REN Y, ZHANG C, BAO H, et al. Probing tyrosinez oxidation in photosystem II core complex isolated from spinach by EPR at liquid helium temperatures [J]. Photosynth Res, 2009, 99: 127-138.
[22] ZHANG C. Low-barrier hydrogen bond plays key role in active photosystem II — a new model for photosynthetic water oxidation [J]. Biochim Biophys Acta, 2007, 1767: 493-499.
[23] BAO H, ZHANG C, KAWAKAMI K, et al. Acceptor side effects on the electron transfer at cryogenic temperatures in intact photosystem II [J]. Biochim Biophys Acta, 2008, 1777: 1109-1115.
[24] DESIRAJU G R. Hydrogen bridges in crystal engineering: interactions without borders [J]. Acc Chem Res, 2002, 35: 565-573.
[25] CLELAND W W, FREY P A,GERLT J A. The low barrier hydrogen bond in enzymatic catalysis [J]. J Biol Chem, 1998, 273: 25529-25532.
[26] YANO J, YACHANDRA V K. Mn4Ca-cluster in photosynthesis: where and how water is oxidized to dioxygen [J]. Chem Rev, 2014, 114: 4175-4205.
[27] PANTAZIS D A. Missing pieces in the puzzle of biological water oxidation [J]. ACS Catal, 2018, 8: 9477-9507.
[28] DEBUS R J. The manganese and calcium ions of photosynthetic oxygen evolution [J]. Biochim Biophys Acta, 1992, 1102: 269-352.
[29] YOCUM C F. The calcium and chloride requirements of the Oevolving complex [J]. Coord Chem Rev, 2008, 252: 296-305.
[30] TOMMOS C, BABCOCK G T. Oxygen production in nature: a lightdriven metalloradical enzyme process [J]. Acc Chem Res, 1998, 31: 18-25.
[31] CINCO R M, ROBBLEE J H, ROMPEL A, et al. Strontium EXAFS reveals the proximity of calcium to the manganese cluster of oxygenevolving photosystem II [J]. J Phys Chem B, 1998, 102: 8248-8256.
[32] ROBBLEE J H, CINCO R M, YACHANDRA V K. X-ray spectroscopybased structure of the Mn cluster and mechanism of photosynthetic oxygen evolution [J]. Biochim Biophys Acta, 2001, 1503: 7-23.
[33] PELOQUIN J M, BRITT R D. EPR/ENDOR characterization of the physical and electronic structure of the OEC Mn-cluster [J].
Biochim Biophys Acta, 2001, 1503: 96-111.
[34] ZHANG C, PAN J, LI L, et al. New structure model of oxygenevolving center and mechanism for oxygen evolution in
photosynthesis [J]. Chin Sci Bull, 1999, 44: 2209-2215.
[35] DAU H, HAUMANN M. The manganese complex of photosystem II in its reaction cycle — Basic framework and possible realization at the atomic level [J]. Coord Chem Rev, 2008, 252: 273-295.
[36] KOK B, FORBUSH B, MCGLOIN M. Cooperation of charges in photosynthetic O2 evolution. I. A linear four step mechanism [J].
Photochem Photobiol, 1970, 11: 457-475.
[37] KREWALD V, RETEGAN M, COX N, et al. Metal oxidation states in biological water splitting [J]. Chem Sci, 2015, 6: 1676-1695.
[38] IBRAHIM M, FRANSSON T, CHATTERJEE R, et al. Untangling the sequence of events during the S2 →S3 transition in photosystem II and implications for the water oxidation mechanism [J]. Proc Nat Acad Sci USA, 2020, 117: 12624-12635.
[39] SUGA M, AKITA F, YAMASHITA K, et al. An oxyl/oxo mechanism for oxygen-oxygen coupling in PSII revealed by an X-ray freeelectron laser [J]. Science, 2019, 366: 334-338.
[40] KERN J, CHATTERJEE R, YOUNG I D, et al. Structures of the intermediates of Kok’s photosynthetic water oxidation clock [J].
Nature, 2018, 563: 421-425.
[41] SUGA M, AKITA F, SUGAHARA M, et al. Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL [J]. Nature, 2017, 543: 131-135.
[42] CHEN C, CHEN Y, ZHANG C. Mimicking the oxygen-evolving center in photosystem II [M]//BARBER J, RUBAN A V, NIXON P
J(eds). Oxygen Production and Reduction in Artificial and Natural Systems. Singapore: World Scientific Publishing Co. Pte. Ltd., 2019:167-189.
[43] CHEN C, CHEN Y, YAO R, et al. Artificial Mn4Ca clusters with exchangeable solvent molecules mimicking the oxygen-evolving
center in photosynthesis [J]. Angew Chem Int Ed, 2019, 58: 3939-3942.
[44] SIEGBAHN P E M. Water oxidation mechanism in photosystem II, including oxidations, proton release pathways, O-O bond formation and O2 release [J]. Biochim Biophys Acta, 2013, 1827: 1003-1019.
[45] KAWASHIMA K, TAKAOKA T, KIMURA H, et al. O2 evolution and recovery of the water-oxidizing enzyme [J]. Nat Commun,
2018, 9: 1247.
[46] BRITT R D, MARCHIORI D A. Photosystem II, poised for Oformation [J]. Science, 2019, 366: 305-306.
[47] VINYARD D J, BRUDVIG G W. Progress toward a molecular mechanism of water oxidation in photosystem II [J]. Annu Rev Phys Chem, 2017, 68: 101-116.
[48] SIEGBAHN P E M. Nucleophilic water attack is not a possible mechanism for O-O bond formation in photosystem II [J]. Proc Nat Acad Sci USA, 2017, 114: 4966-4968.
[49] BARBER J. A mechanism for water splitting and oxygen production in photosynthesis [J]. Nat Plants, 2017, 3: 17041.
[50] ASKERKA M, BRUDVIG G W, BATISTA V S. The O2-evolving complex of photosystem II: Recent insights from quantum
mechanics/molecular mechanics (QM/MM), extended X-ray absorption fine structure (EXAFS), and femtosecond X-ray
crystallography data [J]. Acc Chem Res, 2017, 50: 41-48.
[51] BARBER J, ANDERSSON B. Too much of good things: light can be bad for photosynthesis [J]. Trends Biochem Sci, 1992, 17: 61-66.
[52] YOKTHONGWATTANA K,MELIS A. Photoinhibition and pecovery in oxygenic photosynthesis: Mechanism of a photosystem II damage and repair cycle [M]//Demmig-Adams B(ed). Photoprotection, Photoinhibition, Gene Regulation, and Environment. Dordrecht, The Netherlands: Springer, 2005: 175-191.
[53] BAENA-GONZALEZ E, ARO E M. Biogenesis, assembly and turnover of photosystem II units [J]. Phil Trans R Soc Lond B, 2002, 357: 1451-1460.
[54] DASGUPTA J, ANANYEV G M, DISMUKES G C. Photoassembly of the water-oxidizing complex in photosystem II [J]. Coord Chem Rev, 2008, 252: 347-360.
[55] BRICKER T M, ROOSE J L, FAGERLUND R D, et al. The extrinsic proteins of photosystem II [J]. Biochim Biophys Acta, 2020, 1817: 121-142.
[56] VINYARD D J, ANANYEV G M, DISMUKES G C. Photosystem II: the reaction center of oxygenic photosynthesis [J]. Annu Rev
Biochem, 2013, 82: 577-606.
[57] DEBUS R J. Protein ligation of the photosynthetic oxygen-evolving center [J]. Coord Chem Rev, 2008, 252: 244-258.
[58] DINER B A. Amino acid residues involved in the coordination and assembly of the manganese cluster of photosystem II. Protoncoupled electron transport of the redox-active tyrosines and its relationship to water oxidation [J]. Biochim Biophys Acta, 2001,1503: 147-163.
[59] GISRIEL C J, ZHOU K, HUANG H L, et al. Cryo-EM structure of monomeric photosystem II from Synechocystis sp. PCC 6803
lacking the water-oxidation complex [J]. Joule, 2020, 4: 2131-2148.
[60] ZHANG M, BOMMER M, CHATTERJEE R, et al. Structural insights into the light-driven auto-assembly process of the wateroxidizing Mn4CaO5-cluster in photosystem II [J]. eLife, 2017, 6: e26933.
[61] HUANG G, XIAO Y, PI X, et al. Structural insights into a dimeric Psb27-photosystem II complex from a cyanobacterium
Thermosynechococcus vulcanus [J]. Proc Nat Acad Sci USA, 2021, 118(5): e2018053118. https://doi.org/10.1073/pnas.2018053118.
[62] AVRAMOV A P, HWANG H J, BURNAP R L. The role of Ca2+ and protein scaffolding in the formation of nature’s water oxidizing complex [J]. Proc Nat Acad Sci USA, 2020, 117: 28036-28045.
[63] MURRAY J W, RUTHERFORD A W, NIXON P J. Photosystem II in a state of disassembly [J]. Joule, 2020, 4: 2082-2084.
[64] ZHANG B, SUN L. Artificial photosynthesis: opportunities and challenges of molecular catalysts [J]. Chem Soc Rev, 2019, 48:
2216-2264.
[65] ZHANG C. The first artificial Mn4Ca-cluster mimicking the oxygenevolving center in photosystem II [J]. Sci Chin Life Sci, 2015, 58: 816-817.
[66] ZHANG C. From natural photosynthesis to artificial photosynthesis [J]. Sci Sin Chim, 2016, 46: 1101-1109.
[67] KANADY J S, TSUI E Y, DAY M W, et al. A synthetic model of the Mn3Ca subsite of the oxygen-evolving complex in photosystem II [J]. Science, 2011, 333: 733-736.
[68] MUKHERJEE S, STULL J A, YANO J, et al. Synthetic model of the asymmetric [Mn3CaO4] cubane core of the oxygen-evolving
complex of photosystem II [J]. Proc Natl Acad Sci USA, 2012, 109: 2257-2262.
[69] MUKHOPADHYAY S, MANDAL S K, BHADURI S, et al. Manganese clusters with relevance to photosystem II [J]. Chem Rev,
2004, 104: 3981-4026.
[70] NAJAFPOUR M M, RENGER G, HOŁYNSKA M, et al. Manganese compounds as water-oxidizing catalysts: from the natural wateroxidizing complex to nanosized manganese oxide structures [J]. Chem Rev, 2016, 116: 2886-2936.
[71] GEREY B, GOURE E, FORTAGE J, et al. Manganese-calcium/strontium heterometallic compounds and their relevance for the
oxygen-evolving center of photosystem II [J]. Coord Chem Rev, 2016, 319: 1-24.
[72] KÄRKÄS M D, VERHO O, JOHNSTON E V, et al. Artificial photosynthesis: molecular systems for catalytic water oxidation [J].
Chem Rev, 2014, 114: 11863-12001.
[73] CHEN C, ZHANG C, DONG H, et al. A synthetic model for the oxygen-evolving complex in Sr2+-containing photosystem II [J].
Chem Commun, 2014, 50: 9263-9265.
[74] CHEN C, LI Y, ZHAO G, et al. Natural and artificial Mn4Ca cluster for the water splitting reaction [J]. ChemSusChem, 2017, 10: 4403-4408.
[75] CHEN C, ZHANG C, DONG H, et al. Artificial synthetic MnIVCaoxido complexes mimic the oxygen-evolving complex in photosystem II [J]. Dalton Trans, 2015, 44: 4431-4435.
[76] CHANG W, CHEN C, DONG H, et al. Artificial Mn4-oxido complexes mimic the oxygen-evolving center in photosynthesis [J].
Sci Bull, 2017, 62: 665-668.
[77] ZHANG C, CHEN C, DONG H, et al. A synthetic Mn4Ca-cluster mimicking the oxygen-evolving center of photosynthesis [J].
Science, 2015, 348: 690-693.
[78] KUANG T. A breakthrough of artificial photosynthesis [J]. Nat Sci Rev, 2016, 3: 2-3.
[79] BARBER J. Mn4Ca cluster of photosynthetic oxygen-evolving center: structure, function and evolution [J]. Biochemistry, 2016, 55: 5901-5906.
[80] SUN L. A closer mimic of the oxygen evolution complex of photosystem II [J]. Science, 2015, 348: 635-636.
[81] PAUL S, NEESE F, PANTAZIS D A. Structural models of the biological oxygen-evolving complex: achievements, insights, and
challenges for biomimicry [J]. Green Chem, 2017, 19: 2309-2325.

文章导航

/