科技进展

陆地植物起源研究的新进展

展开
  • 中国农业科学院农业基因组研究所,岭南现代农业科学与技术广东省实验室深圳分中心,农业农村部农业基因 数据分析重点实验室,深圳 518120

收稿日期: 2021-04-10

  网络出版日期: 2021-06-13

基金资助

中国农业科学院科技创新工程、中国农业科学院科技创新工程协同创新任务(CAAS-GXAAS-XTCX2019026-1)和广东省珠江人才创新创业团队项目(2019ZT08N628)

Overview on the origin of land plants

Expand
  • Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120,China

Received date: 2021-04-10

  Online published: 2021-06-13

摘要

植物祖先从水生到陆生的演化是植物进化生物学研究的重要课题,也是改变地球陆地生态系统的关键事件,而目前植物陆地化的进化转变机制尚不明了。最近,对几种链型绿藻和一种角苔植物的高质量基因组解析为这一事件提供了线索。研究得出如下结论:①双星藻纲(Zygnematophyceae)是现存与陆地植物共同祖先最近的姐妹群系;②两类主调控因子(GRAS和PYL)的土壤细菌水平基因转移在驱动植物祖先陆地化的进程中起着重要作用;③植物祖先陆地化是渐进性演化,遗传物质经历了一系列的 “预适应”,很多长期被认为陆地植物特有的基因家族在更原始的绿藻中就已存在;④基因组学是研究植物陆地化及其可逆性过程(如一些水生被子植物)的重要手段。分子机制依然是研究植物陆地化适应性进程的热点之一,包括人工设计的 “实验进化”和在植物进化及适应性进程中扮演重要角色的水平基因转移这一自然的转基因工程事件。

本文引用格式

吴珍, 程时锋 . 陆地植物起源研究的新进展[J]. 自然杂志, 2021 , 43(3) : 225 -231 . DOI: 10.3969/j.issn.0253-9608.2021.03.008

Abstract

The transition of the algal ancestor of land plants from fresh water to land is important in the study of plant evolutionary biology, which has also changed the terrestrial ecosystem of the earth but the evolutionary mechanism of plant terrestrialization remains unknown. The recent report of high-quality reference genomes of several streptophyte algae and one hornwort sheds light on this major event. Based on these studies, we can draw the following conclusions: ①Zygnematophyceae was found to be the closest sister group to the common ancestor of land plants found so far; ②The acquisition of GRAS and PYL genes from soil bacteria via horizontal gene transfer plays an important role in driving the adaptive process of plant terrestrialization; ③The terrestrialization of plant ancestors is an asymptotic evolutionary process, and the genetic material has gone through a series of pre-adaptation processes, which many gene families previously thought to be unique to land plants exist in more primitive green algae; ④Genomics is an important method for studying terrestrialization and its reversibility process (such as some aquatic angiosperms). The molecular mechanism of the adaptive process of plant terrestrialization is still one of the current research hotspots, including artificial design of “experimental evolution”, horizontal gene transfer, a natural transgenic engineering event, and its key role in plant evolution and adaptation. 

参考文献

[1] FAZEKAS A J, KUZMINA M L, NEWMASTER S G, et al. DNA barcoding methods for land plants [J]. DNA Barcodes, 2012, 858: 223-252. 

[2] BOWLES A M, BECHTOLD U, PAPS J. The origin of land plants is rooted in two bursts of genomic novelty [J]. Current Biology, 2020, 30(3): 530-536.

[3] GAO J. Tracking the evolutionary innovations of plant terrestrialization [J]. Gene, 2020, 769: 145203. 

[4] CHENG S, XIAN W, FU Y, et al. Genomes of subaerial Zygnematophyceae provide insights into land plant evolution [J]. Cell, 2019, 179(5): 1057-1067. 

[5] DELAUX P M, XIE X, TIMME R E, et al. Origin of strigolactones in the green lineage [J]. New Phytologist, 2012, 195(4): 857-871. 

[6] KENRICK P, WELLMAN C H, SCHNEIDER H, et al. A timeline for terrestrialization: Consequences for the carbon cycle in the palaeozoic [J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367(1588): 519-536. 

[7] KRANNER I, MINIBAYEVA F V, BECKETT R P, et al. What is stress? Concepts, definitions and applications in seed science [J]. New Phytologist, 2010, 188(3): 655-673. 

[8] TURMEL M, OTIS C, LEMIEUX C. The mitochondrial genome of chara vulgaris: Insights into the mitochondrial DNA architecture of the last common ancestor of green algae and land plants [J]. The Plant Cell, 2003, 15(8): 1888-1903. 

[9] MCCOURT R M, DELWICHE C F, KAROL K G. Charophyte algae and land plant origins [J]. Trends in Ecology & Evolution, 2004, 19(12): 661-666. 

[10] NISHIYAMA T, SAKAYAMA H, DE VRIES J, et al. The chara genome: Secondary complexity and implications for plant terrestrialization [J]. Cell, 2018, 174(2): 448-464. 

[11] GITZENDANNER M A, SOLTIS P S, WONG G K S, et al. Plastid phylogenomic analysis of green plants: A billion years of evolutionary history [J]. American Journal of Botany, 2018, 105(3): 291-301. 

[12] LEEBENS-MACK J H, BARKER M S, CARPENTER E J, et al. One thousand plant transcriptomes and the phylogenomics of green plants [J]. Nature, 2019, 574: 679-685. 

[13] RENSING S A. Gene duplication as a driver of plant morphogenetic evolution [J]. Current Opinion in Plant Biology, 2014, 17: 43-48. 

[14] SÉMON M, WOLFE K H. Consequences of genome duplication [J]. Current Opinion in Genetics & Development, 2007, 17(6): 505- 512. 

[15] RENSING S A. How plants conquered land [J]. Cell, 2020, 181(5): 964-966. 

[16] JIAO C, SøRENSEN I, SUN X, et al. The Penium margaritaceum genome: Hallmarks of the origins of land plants [J]. Cell, 2020, 181(5): 1097-1111. 

[17] LIU C, WANG C, WANG G, et al. Genome-wide analysis of chromatin packing in Arabidopsis thaliana at single-gene resolution [J]. Genome Research, 2016, 26(8): 1057-1068. 

[18] LANG D, ULLRICH K K, MURAT F, et al. The Physcomitrella patens chromosome‐scale assembly reveals moss genome structure and evolution [J]. The Plant Journal, 2018, 93(3): 515-533. 

[19] BOWMAN J L, KOHCHI T, YAMATO K T, et al. Insights into land plant evolution garnered from the Marchantia polymorpha genome [J]. Cell, 2017, 171(2): 287-304. 

[20] ZHANG J, FU X-X, LI R-Q, et al. The hornwort genome and early land plant evolution [J]. Nature Plants, 2020, 6(2): 107-118.

[21] DURING H J. Life strategies of bryophytes: A preliminary review [J]. Lindbergia, 1979, 5: 2-18. 

[22] HORI K, MARUYAMA F, FUJISAWA T, et al. Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation [J]. Nature Communications, 2014, 5(1): 1-9. 

[23] WANG S, LI L, LI H, et al. Genomes of early-diverging streptophyte algae shed light on plant terrestrialization [J]. Nature Plants, 2020, 6(2): 95-106. 

[24] DÍAZ-SANTOS E, VILA M, VIGARA J, et al. A new approach to express transgenes in microalgae and its use to increase the flocculation ability of Chlamydomonas reinhardtii [J]. Journal of Applied Phycology, 2016, 28(3): 1611-1621. 

[25] YONEKURA-SAKAKIBARA K, HIGASHI Y, NAKABAYASHI R. The origin and evolution of plant flavonoid metabolism [J]. Frontiers in Plant Science, 2019, 10: 943. 

[26] HARHOLT J, MOESTRUP Ø, ULVSKOV P. Why plants were terrestrial from the beginning [J]. Trends in Plant Science, 2016, 21(2): 96-101. 

[27] DOYLE J A. Phylogenetic analyses and morphological innovations in land plants [J]. Annual Plant Reviews, 2013, 45: 1-50. DOI: 10.1002/9781118305881.ch1. 

[28] ELSTER J, DEGMA P, KOVÁČIK Ľ, et al. Freezing and desiccation injury resistance in the filamentous green alga Klebsormidium from the antarctic, arctic and slovakia [J]. Biologia, 2008, 63(6): 843-851. 

[29] KARSTEN U, HOLZINGER A. Light, temperature, and desiccation effects on photosynthetic activity, and drought-induced  ultrastructural changes in the green alga Klebsormidium dissectum (streptophyta) from a high alpine soil crust [J]. Microbial Ecology, 2012, 63(1): 51-63. 

[30] NIYOGI K K. Photoprotection revisited: genetic and molecular approaches [J]. Annual Review of Plant Biology, 1999, 50(1): 333- 359. 

[31] IFUKU K, ENDO T, SHIKANAI T, et al. Structure of the chloroplast NADH dehydrogenase-like complex: Nomenclature for nuclear-encoded subunits [J]. Plant and Cell Physiology, 2011, 52(9): 1560-1568. 

[32] GOUDET M M, ORR D J, MELKONIAN M, et al. Rubisco and carbon‐concentrating mechanism co‐evolution across chlorophyte and streptophyte green algae [J]. New Phytologist, 2020, 227(3): 810-823. 

[33] VILLARREAL J C. RENNER S S. Hornwort pyrenoids, carbonconcentrating structures, evolved and were lost at least five times during the last 100 million years [J]. Proceedings of the National Academy of Sciences, 2012, 109(46): 18873-18878.

文章导航

/