免疫化学专刊

组合抗体库技术的研究进展

展开
  • 上海科技大学 免疫化学研究所,上海 201210 

收稿日期: 2021-05-30

  网络出版日期: 2021-10-25

Advances in combinatorial antibody library

Expand
  • Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China

Received date: 2021-05-30

  Online published: 2021-10-25

摘要

 组合抗体库技术是现代免疫化学研究的重要方法。它可以在体外构建大容量、高多样性的文库,将基因型和表型整合在筛选系统中实现表型的可复制,最终利用生物进化原理进行高通量筛选。这一技术可以在体外重建免疫系统,使抗体的筛选不受动物或生物组织的限制;通过分子克隆,可记录供者完整的免疫信息;通过重链和轻链的随机重组,可以提高文库的多样性,规避免疫耐受,揭示罕见抗体谱。随着免疫化学研究的不断深入,组合抗体库技术也在不断改进,出现了新的筛选策略,如基于自分泌的筛选系统和基于细胞-细胞相互作用的筛选系统。文章介绍组合抗体库技术的研究进展。

本文引用格式

强敏, 施晓疌, 张楚悦, 马培翔, 杨光 . 组合抗体库技术的研究进展[J]. 自然杂志, 2021 , 43(5) : 374 -382 . DOI: 10.3969/j.issn.0253-9608.2021.05.008

Abstract

Combinatorial antibody library is a key strategy in immunochemistry, which aims to establish libraries of large capacity and high diversity in vitro. It integrates the genotype and phenotype in the screening system to allow the molecule to self-replicate. It leverages the principle of biological evolution to perform high-throughput screening. This technology allows the reconstruction of an immune system in a test tube and empowers the antibody selection without the constraints of animals or organs. It records the donors’ immune response by molecular clone. The random recombination of heavy and light chains can avoid immunologic tolerance and discover rare antibodies. Due to the development of immunochemistry, the combinatorial antibody library technology keeps updating. Novel screening approaches have emerged, such as autocrine cell-based selection system and cell-cell interaction based system. Here, we introduce the development of combinatorial antibody library technology.

参考文献

[1] LERNER R A. Manufacturing immunity to disease in a test tube: the magic bullet realized [J]. Angew Chem Int Ed, 2006, 45(48): 8106- 8125. 

[2] ORLANDI R, GUSSOW D H, JONES P T, et al. Cloning immunoglobulin variable domains for expression by the polymerase chain reaction [J]. Proc Natl Acad Sci USA, 1989, 86(10): 3833-3837. 

[3] PERSSON M A. Twenty years of combinatorial antibody libraries, but how well do they mimic the immunoglobulin repertoire? [J]. Proc Natl Acad Sci USA, 2009, 106(48): 20137-20138. 

[4] LERNER R A. Combinatorial antibody libraries: new advances, new immunological insights [J]. Nat Rev Immunol, 2016, 16(8): 498-508. 

[5] LIN C W, LERNER R A. Antibody libraries as tools to discover functional antibodies and receptor pleiotropism [J]. Int J Mol Sci, 2021, 22(8): 4123. 

[6] XIE J, ZHANG H, YEA K, et al. Autocrine signaling based selection of combinatorial antibodies that transdifferentiate human stem cells [J]. Proc Natl Acad Sci USA, 2013, 110(20): 8099-8104. 

[7] ZHANG H, XIE J, LERNER R A. A proximity based general method for identification of ligand and receptor interactions in living cells [J]. Biochem Biophys Res Commun, 2014, 454(1): 251-255. 

[8] MA P, REN P, ZHANG C, et al. Avidity-based selection of tissuespecific CAR-T cells from a combinatorial cellular library of CARs [J]. Adv Sci, 2021, 8(6): 2003091. 

[9] YANG Z, WAN Y, TAO P, et al. A cell-cell interaction format for selection of high-affinity antibodies to membrane proteins [J]. Proc Natl Acad Sci USA, 2019, 116(30): 14971-14978. 

[10] ZHENG T, XIE J, YANG Z, et al. Antibody selection using clonal cocultivation of Escherichia coli and eukaryotic cells in miniecosystems [J]. Proc Natl Acad Sci USA, 2018, 115(27): E6145-E6151. 

[11] SMITH G P. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface [J]. Science, 1985, 228(4705): 1315-1317. 

[12] HUSE W D, SASTRY L, IVERSON S A, et al. Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda [J]. Science, 1989, 246(4935): 1275-1281. 

[13] MCCAFFERTY J, GRIFFITHS A D, WINTER G, et al. Phage antibodies: filamentous phage displaying antibody variable domains [J]. Nature, 1990, 348(6301): 552-554. 

[14] ALFALEH M A, ALSAAB H O, MAHMOUD A B, et al. Phage display derived monoclonal antibodies: from bench to bedside [J]. Front Immunol, 2020, 11: 1986. 

[15] JESPERS L S, ROBERTS A, MAHLER S M, et al. Guiding the selection of human antibodies from phage display repertoires to a single epitope of an antigen [J]. Nature Biotechnology (NY), 1994, 12(9): 899-903. 

[16] EDWARDS B M, BARASH S C, MAIN S H, et al. The remarkable flexibility of the human antibody repertoire; isolation of over one thousand different antibodies to a single protein, BLyS [J]. J Mol Biol, 2003, 334(1): 103-118. 

[17] MAZUMDAR S. Raxibacumab [J]. MAbs, 2009, 1(6): 531-538. 

[18] LU D, JIMENEZ X, ZHANG H, et al. Selection of high affinity human neutralizing antibodies to VEGFR2 from a large antibody phage display library for antiangiogenesis therapy [J]. Int J Cancer, 2002, 97(3): 393-399. 

[19] DE HAARD H J, VAN NEER N, REURS A, et al. A large non immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies [J]. J Biol Chem, 1999, 274(26): 18218-18230. 

[20] LI S, KUSSIE P, FERGUSON K M. Structural basis for EGF receptor inhibition by the therapeutic antibody IMC-11F8 [J]. Structure, 2008, 16(2): 216-227. 

[21] MCDERMOTT D F, SOSMAN J A, SZNOL M, et al. Atezolizumab, an anti-programmed death-ligand 1 antibody, in metastatic renal cell carcinoma: long-term safety, clinical activity, and immune correlates from a phase Ia study [J]. J Clin Oncol, 2016, 34(8): 833-842. 

[22] HERBST R S, SORIA J C, KOWANETZ M, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients [J]. Nature, 2014, 515(7528): 563-567. 

[23] BOYERINAS B, JOCHEMS C, FANTINI M, et al. Antibodydependent cellular cytotoxicity activity of a novel anti-PD-L1 antibody avelumab (MSB0010718C) on human tumor cells [J]. Cancer Immunol Res, 2015, 3(10): 1148-1157. 

[24] MARKHAM A. Guselkumab: first global approval [J]. Drugs, 2017, 77(13): 1487-1492. 

[25] KENNISTON J A, FAUCETTE R R, MARTIK D, et al. Inhibition of plasma kallikrein by a highly specific active site blocking antibody [J]. J Biol Chem, 2014, 289(34): 23596-23608. 

[26] SALVATORE G, BEERS R, MARGULIES I, et al. Improved cytotoxic activity toward cell lines and fresh leukemia cells of a mutant anti-CD22 immunotoxin obtained by antibody phage display [J]. Clin Cancer Res, 2002, 8(4): 995-1002. 

[27] ALDERSON R F, KREITMAN R J, CHEN T, et al. CAT-8015: a second-generation pseudomonas exotoxin A-based immunotherapy targeting CD22-expressing hematologic malignancies [J]. Clin Cancer Res, 2009, 15(3): 832-839. 

[28] CATTANEO A, BIOCCA S. The selection of intracellular antibodies [J]. Trends Biotechnol, 1999, 17(3): 115-121. 

[29] WULFF H, CHRISTOPHERSEN P, COLUSSI P, et al. Antibodies and venom peptides: new modalities for ion channels [J]. Nat Rev Drug Discov, 2019, 18(5): 339-357. 

[30] ALVAREZ DE LA ROSA D, CANESSA C M, FYFE G K, et al. Structure and regulation of amiloride-sensitive sodium channels [J]. Annu Rev Physiol, 2000, 62: 573-594. 

[31] QIANG M, DONG X, ZHA Z, et al. Selection of an ASIC1ablocking combinatorial antibody that protects cells from ischemic death [J]. Proc Natl Acad Sci USA, 2018, 115(32): E7469-E7477. 

[32] GOODENOUGH D A, REVEL J P. A fine structural analysis of intercellular junctions in the mouse liver [J]. J Cell Biol, 1970, 45(2): 272-290. 

[33] SRINIVAS M, VERSELIS V K, WHITE T W. Human diseases associated with connexin mutations [J]. Biochim Biophys Acta Biomembr, 2018, 1860(1): 192-201. 

[34] GARCIA I E, MARIPILLAN J, JARA O, et al. Keratitis-ichthyosisdeafness syndrome-associated Cx26 mutants produce nonfunctional gap junctions but hyperactive hemichannels when co-expressed with wild type Cx43 [J]. J Invest Dermatol, 2015, 135(5): 1338-1347. 

[35] XU L, CARRER A, ZONTA F, et al. Design and characterization of a human monoclonal antibody that modulates mutant connexin 26 hemichannels implicated in deafness and skin disorders [J]. Front Mol Neurosci, 2017, 10: 298. 

[36] KUANG Y, ZORZI V, BURATTO D, et al. A potent antagonist antibody targeting connexin hemichannels alleviates clouston syndrome symptoms in mutant mice [J]. EBioMedicine, 2020, 57: 102825. 

[37] RATHORE A S, SARKER A, GUPTA R D. Recent developments toward antibody engineering and affinity maturation [J]. Protein Pept Lett, 2018, 25(10): 886-896. 

[38] YLERA F, HARTH S, WALDHERR D, et al. Off-rate screening for selection of high-affinity anti-drug antibodies [J]. Anal Biochem, 2013, 441(2): 208-213. 

[39] FELDHAUS M J, SIEGEL R W. Yeast display of antibody fragments: a discovery and characterization platform [J]. J Immunol Methods, 2004, 290(1/2): 69-80. 

[40] CHAO G, LAU W L, HACKEL B J, et al. Isolating and engineering human antibodies using yeast surface display [J]. Nat Protoc, 2006, 1(2): 755-768.

[41] YANG Z, DU M, WANG W, et al. Affinity maturation of an TpoR targeting antibody in full-length IgG form for enhanced agonist activity [J]. Protein Eng Des Sel, 2018, 31(7/8): 233-241. 

[42] SHI X, WAN Y, WANG N, et al. Selection of a picomolar antibody that targets CXCR2-mediated neutrophil activation and alleviates EAE symptoms [J]. Nature Communications, 2021, 12(1): 2547. 

[43] TAO P, KUANG Y, LI Y, et al. Selection of a full agonist combinatorial antibody that rescues leptin deficiency in vivo [J]. Adv Sci, 2020, 7(16): 2000818. 

[44] HUTCHINGS C J, COLUSSI P, CLARK T G. Ion channels as therapeutic antibody targets [J]. MAbs, 2019, 11(2): 265-296. [45] HUTCHINGS C J, KOGLIN M, MARSHALL F H. Therapeutic antibodies directed at G protein-coupled receptors [J]. MAbs, 2010, 2(6): 594-606. 

[46] WANG X X, SHUSTA E V. The use of scFv-displaying yeast in mammalian cell surface selections [J]. J Immunol Methods, 2005, 304(1/2): 30-42. 

[47] TILLOTSON B J, CHO Y K, SHUSTA E V. Cells and cell lysates: a direct approach for engineering antibodies against membrane proteins using yeast surface display [J]. Methods, 2013, 60(1): 27-37. 

[48] LERNER R A, GROVER R K, ZHANG H, et al. Antibodies from combinatorial libraries use functional receptor pleiotropism to regulate cell fates [J]. Q Rev Biophys, 2015, 48(4): 389-394. 

[49] YEA K, XIE J, ZHANG H, et al. Selection of multiple agonist antibodies from intracellular combinatorial libraries reveals that cellular receptors are functionally pleiotropic [J]. Curr Opin Chem Biol, 2015, 26: 1-7. 

[50] YEA K, ZHANG H, XIE J, et al. Agonist antibody that induces human malignant cells to kill one another [J]. Proc Natl Acad Sci USA, 2015, 112(45): E6158-E6165. 

[51] ZHANG H, WILSON I A, LERNER R A. Selection of antibodies that regulate phenotype from intracellular combinatorial antibody libraries [J]. Proc Natl Acad Sci USA, 2012, 109(39): 15728-15733. 

[52] YEA K, ZHANG H, XIE J, et al. Converting stem cells to dendritic cells by agonist antibodies from unbiased morphogenic selections [J]. Proc Natl Acad Sci USA, 2013, 110(37): 14966-14971. 

[53] XIE J, YEA K, ZHANG H, et al. Prevention of cell death by antibodies selected from intracellular combinatorial libraries [J]. Chemistry Biology, 2014, 21(2): 274-283. 

[54] BLANCHARD J W, XIE J, EL-MECHARRAFIE N, et al. Replacing reprogramming factors with antibodies selected from combinatorial antibody libraries [J]. Nat Biotechnol, 2017, 35(10): 960-968. 

[55] WANG Z, WU Z, LIU Y, et al. New development in CAR-T cell therapy [J]. J Hematol Oncol, 2017, 10(1): 53. [56] MIKKILINENI L, KOCHENDERFER J N. CAR T cell therapies for patients with multiple myeloma [J]. Nat Rev Clin Oncol, 2021, 18(2): 71-84. 

[57] ALI S A, SHI V, MARIC I, et al. T cells expressing an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma [J]. Blood, 2016, 128(13): 1688-1700. 

[58] BRUDNO J N, KOCHENDERFER J N. Recent advances in CAR T-cell toxicity: mechanisms, manifestations and management [J]. Blood Rev, 2019, 34: 45-55. 

[59] DAI H, WANG Y, LU X, et al. Chimeric antigen receptors modified T-cells for cancer therapy [J]. J Natl Cancer Inst, 2016, 108(7): 439. 

[60] DRENT E, THEMELI M, POELS R, et al. A rational strategy for reducing on-target off-tumor effects of CD38-chimeric antigen receptors by affinity optimization [J]. Mol Ther, 2017, 25(8): 1946- 1958. 

[61] LAMERS C H, LANGEVELD S C, GROOT-VAN RUIJVEN C M, et al. Gene-modified T cells for adoptive immunotherapy of renal cell cancer maintain transgene-specific immune functions in vivo [J]. Cancer Immunol Immunother, 2007, 56(12): 1875-1883.

文章导航

/