免疫化学专刊

肿瘤免疫治疗研究进展

展开
  • ①上海科技大学 免疫化学研究所,上海 201210;②中国科学院上海药物研究所 药物发现与设计中心,上海201203;③中国科学院分子细胞科学卓越创新中心,上海 200031

收稿日期: 2021-06-01

  网络出版日期: 2021-10-25

Advances in research on tumor immunotherapy

Expand
  • ①Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; ②Drug Discovery
    & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; ③Center for
    Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China

Received date: 2021-06-01

  Online published: 2021-10-25

摘要

肿瘤免疫治疗通过激发或重建机体的免疫系统,从而控制和杀伤肿瘤细胞,是继手术、放疗、化疗、靶向治疗后的另一种有效的肿瘤治疗手段。免疫学和肿瘤生物学等多个学科的快速发展促使各种新兴的肿瘤免疫疗法进入临床研究并展现出强大的治疗潜力。目前临床常见的肿瘤免疫疗法包括单克隆抗体疗法、免疫检查点阻断剂疗法、过继细胞疗法、溶瘤病毒疗法和肿瘤疫苗等。文章回顾肿瘤免疫疗法的发展历程,分析最新的研究进展,并对未来进行展望,以期为肿瘤免疫治疗药物的研发提供参考。

本文引用格式

李龙, 谢成英, 郑明月, 蒋华良 . 肿瘤免疫治疗研究进展[J]. 自然杂志, 2021 , 43(6) : 391 -399 . DOI: 10.3969/j.issn.0253-9608.2021.06.001

Abstract

Tumor immunotherapy can control and kill tumor cells by stimulating or restoring the immune system. It is another effective treatment after surgery, radiotherapy, chemotherapy and targeted therapy. A variety of emerging tumor immunotherapies
are being applied in clinical research and demonstrate the potential of powerful treatment, benefiting from the rapid development
of multiple-subjects such as immunology and tumor biology. At present, clinical immunotherapeutic strategies for cancer include
therapeutic monoclonal antibody immunotherapy, immune checkpoint inhibitor therapy, adoptive cell therapy, oncolytic virus therapy, and tumor vaccine. This paper reviews the development of tumor immunotherapy, and analyzes the latest research progress and futureprospects, in order to provide reference for drug research and development in tumor immunotherapy.

参考文献

[1] YANG Y. Cancer immunotherapy: harnessing the immune system to battle cancer [J]. J Clin Invest, 2015, 125(9): 3335-3337.

[2] FRANKEL T, LANFRANCA M P, ZOU W. The role of tumor microenvironment in cancer immunotherapy [M]//Advances in Experimental Medicine and Biology. Vol. 1036. Cham, Switzerland: Springer International Publishing AG, 2017: 51-64.

[3] COUZIN-FRANKEL J. Breakthrough of the year 2013. Cancer immunotherapy [J]. Science, 2013, 342(6165): 1432-1433.

[4] QIN Z, ZHANG X, CHEN Z, et al. Establishment and validation of an immune-based prognostic score model in glioblastoma
[J]. Int Immunopharmacol, 2020, 85: 106636. DOI: 10.1016/j.intimp.2020.106636.

[5] ARNETH B. Tumor microenvironment [J]. Medicina (Kaunas), 2019, 56(1): 15. DOI: 10.3390/medicina56010015.

[6] GASSER S, LIM L H K, CHEUNG F S G. The role of the tumour microenvironment in immunotherapy [J]. Endocr Relat Cancer,
2017, 24(12): T283-T295.
[7] CRESPO J, SUN H, WELLING T H, et al. T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment [J]. Curr Opin Immunol, 2013, 25(2): 214-221.
[8] WEINER G J. Building better monoclonal antibody-based therapeutics [J]. Nat Rev Cancer, 2015, 15(6): 361-370.
[9] TAYLOR R P. Of mice and mechanisms: identifying the role of complement in monoclonal antibody-based immunotherapy [J].
Haematologica, 2006, 91(2): 146a.
[10] CLYNES R, TAKECHI Y, MOROI Y, et al. Fc receptors are required in passive and active immunity to melanoma [J]. Proc Natl Acad Sci USA, 1998, 95(2): 652-656.
[11] LIMA A B, MACEDO L T, SASSE A D. Addition of bevacizumab to chemotherapy in advanced non-small cell lung cancer: a
systematic review and meta-analysis [J]. PLoS One, 2011, 6(8): e22681. DOI: 10.1371/journal.pone.0022681.
[12] LIAO M Z, LU D, KAGEDAL M, et al. Model informed therapeutic dose optimization strategies for antibody-drug conjugates (ADCs) in oncology: What can we learn from FDA-approved ADCs? [J]. Clin Pharmacol Ther, 2021. DOI: 10.1002/cpt.2278.
[13] KHONGORZUL P, LING C J, KHAN F U, et al. Antibody-drug conjugates: A comprehensive review [J]. Mol Cancer Res, 2020,
18(1): 3-19.
[14] EDUPUGANTI V, TYNDALL J D A, GAMBLE A B. Self-immolative linkers in prodrugs and antibody drug conjugates in
cancer treatment [J]. Recent Pat Anticancer Drug Discov, 2021. DOI: 10.2174/1574892816666210509001139.
[15] MULLARD A. FDA approves 100th monoclonal antibody product [J]. Nat Rev Drug Discov, 2021. DOI: 10.1038/d41573-021-00079-7.
[16] KRISHNAMURTHY A, JIMENO A. Bispecific antibodies for cancer therapy: A review [J]. Pharmacol Ther, 2018, 185: 122-134.
DOI: 10.1016/j.pharmthera.2017.12.002.
[17] WEI G, ZHANG H, ZHAO H, et al. Emerging immune checkpoints in the tumor microenvironment: Implications for cancer
immunotherapy [J]. Cancer Lett, 2021, 511: 68-76. DOI: 10.1016/j.canlet.2021.04.021.
[18] SINGH S, HASSAN D, ALDAWSARI H M, et al. Immune checkpoint inhibitors: a promising anticancer therapy [J]. Drug
Discov Today, 2020, 25(1): 223-229.
[19] BAGCHI S, YUAN R, ENGLEMAN E G. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and
mechanisms of response and resistance [J]. Annu Rev Pathol, 2021, 24(16): 223-249. DOI: 10.1146/annurev-pathol-042020-042741.

[20] SASIKUMAR P G, RAMACHANDRA M. Small-molecule immune checkpoint inhibitors targeting PD-1/PD-L1 and other emerging
checkpoint pathways [J]. BioDrugs, 2018, 32(5): 481-497.
[21] LI K, TIAN H. Development of small-molecule immune checkpoint inhibitors of PD-1/PD-L1 as a new therapeutic strategy for tumour immunotherapy [J]. J Drug Target, 2019, 27(3): 244-256.
[22] JING W, MCALLISTER D, VONDERHAAR E P, et al. STING agonist inflames the pancreatic cancer immune microenvironment
and reduces tumor burden in mouse models [J]. J Immunother
Cancer, 2019, 7(1): 115. DOI: 10.1186/s40425-019-0573-5.
[23] VYSKOCIL S, CARDIN D, CIAVARRI J, et al. Identification of
novel carbocyclic pyrimidine cyclic dinucleotide STING agonists
for antitumor immunotherapy using systemic intravenous route [J].
J Med Chem, 2021, 64(10): 6902-6923.
[24] WANG Z, CAO Y J. Adoptive cell therapy targeting neoantigens: A frontier for cancer research [J]. Front Immunol, 2020, 11: 176. DOI: 10.3389/fimmu.2020.00176.
[25] KEW K. What is CAR T-cell therapy? [J]. Drug Ther Bull, 2021, 59(5): 73-76.
[26] FEINS S, KONG W, WILLIAMS E F, et al. An introduction to chimeric antigen receptor (CAR) T-cell immunotherapy for human
cancer [J]. Am J Hematol, 2019, 94(S1): S3-S9.
[27] SERMER D, BRENTJENS R. CAR T-cell therapy: Full speed ahead [J]. Hematol Oncol, 2019, 37(S1): 95-100. DOI: 10.1002/hon.2591.
[28] CHONG E A, RUELLA M, SCHUSTER S J. Five-year outcomes for refractory B-cell lymphomas with CAR T-cell therapy [J]. N
Engl J Med, 2021, 384(7): 673-674.
[29] ABREU T R, FONSECA N A, GONCALVES N, et al. Current challenges and emerging opportunities of CAR-T cell therapies
[J]. J Control Release, 2020, 319: 246-261. DOI: 10.1016/j.jconrel.2019.12.047.
[30] CD19/CD22 dual-targeted CAR-T therapy active in relapsed/refractory DLBCL [J]. Oncologist, 2020, 25 (S1): S12-S13.
[31] HU Y, ZHOU Y, ZHANG M, et al. CRISPR/Cas9-engineereduniversal CD19/CD2 2 dual-targeted CAR-T cell therapy for
relapsed/refractory B-cell acute lymphoblastic leukemia [J]. Clin Cancer Res, 2021, 27(10): 2764-2772.
[32] DAHER M, MELO GARCIA L, LI Y, et al. CAR-NK cells: the next wave of cellular therapy for cancer [J]. Clin Transl Immunology, 2021, 10(4): e1274.
[33] XIE G, DONG H, LIANG Y, et al. CAR-NK cells: A promising cellular immunotherapy for cancer [J]. EBioMedicine, 2020, 59:
102975. DOI: 10.1016/j.ebiom.2020.102975.
[34] GONG Y, KLEIN WOLTERINK R G J, WANG J, et al. Chimeric antigen receptor natural killer (CAR-NK) cell design and
engineering for cancer therapy [J]. J Hematol Oncol, 2021, 14(1):73. 
[35] KIM N, LEE H H, LEE H J, et al. Natural killer cells as a promising therapeutic target for cancer immunotherapy [J]. Arch Pharm Res, 2019, 42(7): 591-606.
[36] FRANKS S E, WOLFSON B, HODGE J W. Natural born killers: NK cells in cancer therapy [J]. Cancers (Basel), 2020, 12(8): 2131. DOI: 10.3390/cancers12082131.
[37] ZHANG J, WANG L. The emerging world of TCR-T cell trials against cancer: A systematic review [J]. Technol Cancer Res Treat, 2019, 18: 1533033819831068. DOI: 10.1177/1533033819831068.
[38] BIERNACKI M A, FOSTER K A, WOODWARD K B, et al. CBFB-MYH11 fusion neoantigen enables T cell recognition and
killing of acute myeloid leukemia [J]. J Clin Invest, 2020, 130(10): 5127-5141.
[39] SANTOIEMMA P P, POWELL JR D J. Tumor infiltrating lymphocytes in ovarian cancer [J]. Cancer Biol Ther, 2015, 16(6):
807-820.
[40] HALL M, LIU H, MALAFA M, et al. Expansion of tumor-infiltrating lymphocytes (TIL) from human pancreatic tumors [J]. J
Immunother Cancer, 2016, 4: 61. DOI: 10.1186/s40425-016-0164-7.
[41] FUKUHARA H, INO Y, TODO T. Oncolytic virus therapy: A new era of cancer treatment at dawn [J]. Cancer Sci, 2016, 107(10): 1373-1379.
[42] CHAURASIYA S, FONG Y, WARNER S G. Oncolytic virotherapy for cancer: clinical experience [J]. Biomedicines, 2021, 9(4): 419. DOI: 10.3390/biomedicines9040419.
[43] FU L Q, WANG S B, CAI M H, et al. Recent advances in oncolytic virus-based cancer therapy [J]. Virus Res, 2019, 270: 197675. DOI: 10.1016/j.virusres.2019.197675.
[44] RAJA J, LUDWIG J M, GETTINGER S N, et al. Oncolytic virus immunotherapy: future prospects for oncology [J]. J Immunother
Cancer, 2018, 6(1): 140.
[45] LIANG M. Oncorine, the world first oncolytic virus medicine and its update in china [J]. Curr Cancer Drug Targets, 2018, 18(2): 171-176.
[46] HAMILTON J A, ANDERSON G P. GM-CSF biology [J]. Growth Factors, 2004, 22(4): 225-231.
[47] KATO T, NAKAMORI M, MATSUMURA S, et al. Oncolytic virotherapy with human telomerase reverse transcriptase promoter
regulation enhances cytotoxic effects against gastric cancer [J]. Oncol Lett, 2021, 21(6): 490.
[48] CHEEVER M A, HIGANO C S. PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine
[J]. Clin Cancer Res, 2011, 17(11): 3520-3526.
[49] MCNAMARA M A, NAIR S K, HOLL E K. RNA-based vaccines in cancer immunotherapy [J]. J Immunol Res, 2015, 2015: 794528. DOI: 10.1155/2015/794528.
[50] SONG Q, ZHANG C D, WU X H. Therapeutic cancer vaccines: From initial findings to prospects [J]. Immunol Lett, 2018, 196: 11-21. DOI: 10.1016/j.imlet.2018.01.011.
[51] VERMAELEN K. Vaccine strategies to improve anti-cancer cellular immune responses [J]. Front Immunol, 2019, 10: 8. DOI: 10.3389/fimmu.2019.00008.
[52] WAKI K, YAMADA A. Personalized peptide vaccine for cancer treatment; now and its future [J]. Nihon Rinsho, 2017, 75(2): 251-256.
[53] SCHUMACHER T N, SCHREIBER R D. Neoantigens in cancer immunotherapy [J]. Science, 2015, 348(6230): 69-74.
[54] KENNEDY L B, SALAMA A K S. A review of cancer immunotherapy toxicity [J]. CA Cancer J Clin, 2020, 70(2): 86-104.
[55] RAMOS-CASALS M, BRAHMER J R, CALLAHAN M K, et al. Immune-related adverse events of checkpoint inhibitors [J]. Nat Rev
Dis Primers, 2020, 6(1): 38. DOI: 10.1038/s41572-020-0160-6.
[56] KARIMI A, ALILOU S, MIRZAEI H R. Adverse events following administration of anti-CTLA4 antibody ipilimumab [J]. Front
Oncol, 2021, 11: 624780. DOI: 10.3389/fonc.2021.624780.
[57] HEGDE P S, CHEN D S. Top 10 challenges in cancer immunotherapy [J]. Immunity, 2020, 52(1): 17-35.

文章导航

/