特约专稿

金属玻璃的过去、现在和未来

展开
  • ①中国科学院物理研究所,北京 100190;②松山湖材料实验室,广东 东莞 523808

收稿日期: 2022-02-06

  网络出版日期: 2022-06-20

基金资助

国家基金委重大项目和基础中心项目(11790291、61888102)、中国科学院先导项目(XDB30000000)、广东省重大基础和应用基础项目(2019B030302010)、科技部973项目(2015CB856800)

Brief history, present and future of metallic glasses

Expand
  • ①Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; ②Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong Province, China

Received date: 2022-02-06

  Online published: 2022-06-20

摘要

金属玻璃(又称非晶合金)是一类原子结构长程无序、短程有序的金属材料。它是通过急冷、高压、强变形、先进制造等现代技术工艺以及熵或序调控理念合成的,兼具金属、玻璃、液体、固体和软物质等物态特性的新型金属材料,也是玻璃家族的新成员。金属玻璃突破了金属材料原子结构有序的固有概念,颠覆了传统金属材料从成分和缺陷出发设计和制备的思路,把金属材料的强度、韧性、弹性、抗腐蚀、抗辐照等性能指标提升到前所未有的高度。它对金属材料的研发、结构材料、绿色节能、磁性材料、催化、信息等领域产生深刻的影响,同时催生了准晶、高熵合金、复杂合金、高熵金属玻璃、非晶基复合材料等新金属材料体系,彻底改变了古老金属和玻璃领域的面貌。金属玻璃的发明和研究虽然只有不到百年历史,但已经在军工航天等高技术、绿色节能、信息电子器件、催化、防腐等领域有广泛的应用,也为研究材料科学、凝聚态物理、复杂体系中一些重要科学问题提供了独特的模型体系,并成为凝聚态物理的一个重要分支学科。文章回顾了近百年来金属玻璃研究和研发的历程,分析了当前该领域的前沿科学问题、发展方向、重要进展、机遇和挑战,以及在高新技术领域的应用,并探讨了金属玻璃及其相关领域如地外玻璃的发展前景。

本文引用格式

汪卫华 . 金属玻璃的过去、现在和未来[J]. 自然杂志, 2022 , 44(3) : 173 -181 . DOI: 10.3969/j.issn.0253-9608.2022.03.001

Abstract

Metallic glasses are novel metallic materials with long-range atomic disorder and short-range atomic order. Its formation involves in modern formation technology such as rapid quenching, high pressure, severe shear deformation, and ideas such as entropy modulation, and advanced manufacture and so on. The metallic glass, which is a newcomer in glass and metal families, is at the cutting edge of research and of current interest and significance in condensed matter physics, materials science and engineering. The unique structural features and outstanding mechanical, physical and chemical properties of the metallic glasses provide model system for studying some long-standing fundamental issues and have potential engineering and functional applications. In this article,the autho r comprehensively reviews the development history of the metallic glasses, and briefly introduces the recent progress in fundamental research and applications, and also predicts the future of the rapidly moving field.

参考文献

[1] ANDERSON P W. Through a glass lightly [J]. Science, 1995, 267: 1615-1616.
[2] BOURHIS E L. Glass: mechanics and technology [M]. Weiheim: WILEY-VCH Inc., 2008.
[3] 干福熹. 丝绸之路上的古代玻璃研究[M]. 上海: 复旦大学出版社, 2011.
[4] 郭贻诚, 王震西. 非晶态物理学[M]. 北京: 科学出版社, 1984.
[5] 汪卫华. 非晶态物质的本质和特性[J]. 物理学进展, 2013, 33: 177-351.
[6] 汪卫华. 金属玻璃简史[J]. 物理, 2011, 40: 701-709.
[7] ZALLEN R. The physics of amorphous solids [M]. New York: Wiley, 1983.
[8] BRENNER A, RIDDELL G. Deposition of nickel and cobalt by chemical reduction [J]. J Res Nat Bur Stand, 1947, 39: 385-395.
[9] BRENNER A, COUCH D E, WILLIAMS E K. Electrodeposition of alloys of phosphorus with nickel or cobalt [J]. J Res Nat Bur Stand, 1950, 44: 109-122.
[10] BUCKEL W, HILSCH R. Einfluss der kondensation bei tiefen temperaturen auf den elektrischen widerstand und die supraleitung fur verschiedene metalle [J]. Z Phys, 1954, 138: 109-120.
[11] KLEMENT W, WILLENS R, DUWEZ P. Non-crystalline structure in solidified gold-silicon alloys [J]. Nature, 1960, 187: 869-870.
[12] TURNBULL D. Under what conditions can a glass be formed [J]. Contem Phys, 1969, 10: 473-488.
[13] ASHBY M F. Materials selection in mechanical design [J]. 3rd ed. Amsterdam: Elsiver, 2005.
[14] BROWN L M, PAIS A, PIPPARD S B. Twentieth century physics [M]. Bristol: Institute of Physics Publishing, 1995.
[15] JOHNSON W L. Thermodynamic and kinetic aspects of the crystal to glass transformation in metallic materials [J]. Prog Mater Sci, 1986, 30: 81-134.
[16] SURYANARAYANA C. Mechanical alloying and milling [J]. Prog Mater Sci, 2001, 46: 1-184.
[17] BAI H Y, MICHAELSEN C, BORMANN R. Inverse melting in a system with positive heat of formation [J]. Phy Rev B, 1997, 56: 11361-11364.
[18] CHEN H S, HAEMMERLE W H. Excess specific heat of a glassy Pd 0.775 Cu 0.06 Si 0.165 alloy at low temperature [J]. J Non-Cryst Solids, 1972, 11(2): 161-169.
[19] KUI H W, GREER A L, TURNBULL D. Formation of bulk metallic glass by fluxing [J]. Appl Phys Lett, 1984, 45: 615-616.
[20] JOHNSON W L. Bulk glass-forming metallic alloys: science and technology [J]. MRS Bull, 1999, 24: 42-56.
[21] WANG W H. The elastic properties, elastic models and elastic perspectives of metallic glasses [J]. Prog Mater Sci, 2012, 57: 487-656.
[22] LEWANDOWSKI L L, WANG W H, GREER A L. Intrinsic plasticity or brittleness of metallic glasses [J]. Philo Mag Lett,

2005, 85(2): 77-87.
[23] LIU Y H, WANG G, PAN M X, et al. Super plastic bulk metallic glasses at room temperature [J]. Science, 2007, 315: 1385.
[24] DEMETRIOU M D, LAUNEY M E, GARRETT G, et al. A damage-tolerant glass [J]. Nature Mater, 2011, 10: 123-128.
[25] SILVEYRA J M, FERRARA E, DALE L, et al. Soft magnetic materials for a sustainable and electrified world [J]. Science, 2018, 362: eaao0195.
[26] LI M X, ZHAO S F, LU Z, et al. High temperature bulk metallic glasses developed by combinatorial methods [J]. Nature, 2019, 569: 99-103.
[27] GIBNEY E. How to build a Moon base [J]. Nature, 2018, 562: 474-478.


文章导航

/