专题综述

细菌转录翻译偶联机制研究

展开
  • 中国科学院上海免疫与感染研究所,上海 200031
王程远,研究方向:致病耐药菌转录调控及抗生素开发研究。

收稿日期: 2024-03-11

  网络出版日期: 2024-04-19

Recent advances of transcription-translation coupling in bacteria

Expand
  • Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China

Received date: 2024-03-11

  Online published: 2024-04-19

摘要

中心法则描述了遗传信息从DNA到RNA再到蛋白质的传递过程。转录过程是RNA聚合酶以DNA为模板合成信使RNA的过程,翻译过程是核糖体利用信使RNA合成蛋白质的过程。与真核生物不同,细菌和古菌没有细胞核膜的分隔,其转录过程和翻译过程在相同时间、相同位置上进行。其中,RNA聚合酶与核糖体相互协同,同步完成转录和翻译的现象被称为转录翻译偶联。转录翻译偶联是细菌和古菌的一种重要基因调控机制,能同时有效地调控转录过程和翻译过程,是细菌适应复杂环境的重要生物学基础。数十年来,大量的研究逐步揭示了细菌转录翻译偶联机制在细菌基因表达调控中的作用,一系列参与转录翻译偶联过程的调控因子也被鉴定发现。近期,基于不同偶联状态的转录翻译偶联复合体结构的突破性研究,首次系统地展示了在不同信使RNA间距下,转录翻译偶联过程的动态变化,为后续研究转录翻译偶联基因调控机制提供了理论基础。

本文引用格式

张晶, 王程远 . 细菌转录翻译偶联机制研究[J]. 自然杂志, 2024 , 46(2) : 95 -104 . DOI: 10.3969/j.issn.0253-9608.2024.02.003

Abstract

The central dogma elucidates the process by which genetic information is transferred from DNA to RNA and ultimately to protein. During transcription, messenger RNA (mRNA) is synthesized by RNA polymerase using DNA as a template. Subsequently, ribosomes utilize the newly synthesized mRNA during translation to generate proteins. In contrast to eukaryotes, bacteria and archaea exhibit simultaneous transcription and translation within the same cellular compartment. This co-occurrence of processes is facilitated through transcription-translation coupling, wherein the leading ribosome follows transcribing RNA polymerase. Physical interactions among these macromolecular machines are important for both transcription and translation processes. Extensive research on bacterial transcription-translation coupling has progressively unveiled its pivotal role in gene regulation for last decades while identifying various regulatory factors involved in this process. Recent structural studies investigating different states of the transcriptiontranslation coupling complex have systematically demonstrated dynamic changes occurring under varying mRNA spacing conditions, thereby providing a theoretical foundation for further investigations into the gene regulation mechanisms governed by transcriptiontranslation
coupling.

参考文献

[1] MILLER O L JR, HAMKALO B A, THOMAS C A JR. Visualization of bacterial genes in action [J]. Science, 1970, 169(3943): 392-395.
[2] DUTTA D, SHATALIN K, EPSHTEIN V, et al. Linking RNA polymerase backtracking to genome instability in E. coli [J]. Cell, 2011, 146(4): 533-543.
[3] STEVENSON-JONES F, WOODGATE J, CASTRO-ROA D, et al. Ribosome reactivates transcription by physically pushing RNA polymerase out of transcription arrest [J]. Proc Natl Acad Sci USA, 2020, 117(15): 8462-8467.
[4] ZHU M, MORI M, HWA T, et al. Disruption of transcription–translation coordination in Escherichia coli leads to premature
transcriptional termination [J]. Nat Microbiol, 2019, 4(12): 2347-2356.
[5] IRASTORTZA-OLAZIREGI M, AMSTER-CHODER O. Coupled transcription-translation in prokaryotes: an old couple with new surprises [J]. Front Microbiol, 2021, 11. DOI: 10.3389/fmicb.2020.624830.
[6] LANDICK R, CAREY J, YANOFSKY C. Translation activates the paused transcription complex and restores transcription of the trp
operon leader region [J]. Proc Natl Acad Sci USA, 1985, 82(14): 4663-4667.
[7] CHAN C L, LANDICK R. Dissection of the his leader pause site by base substitution reveals a multipartite signal that includes a pause RNA hairpin [J]. J Mol Biol, 1993, 233(1): 25-42.
[8] RICHARDSON J P. Rho-dependent termination and ATPases in transcript termination [J]. Biochim Biophys Acta, 2002, 1577(2):
251-260.
[9] EPSHTEIN V, DUTTA D, WADE J, et al. An allosteric mechanism of Rho-dependent transcription termination [J]. Nature, 2010,
463(7278): 245-249.
[10] SONG E, UHM H, MUNASINGHA P R, et al. Rho-dependent transcription termination proceeds via three routes [J]. Nat Commun,
2022, 13: 1663.
[11] MOLODTSOV V, WANG C, FIRLAR E, et al. Structural basis of Rho-dependent transcription termination [J]. Nature, 2023,
614(7947): 367-374.
[12] SAXENA S, MYKA K K, WASHBURN R, et al. Escherichia coli transcription factor NusG binds to 70S ribosomes [J]. Mol Microbiol, 2018, 108(5): 495-504.
[13] BURMANN B M, SCHWEIMER K, LUO X, et al. A NusE: NusG complex links transcription and translation [J]. Science, 2010, 328(5977): 501-504.
[14] ADHYA S, GOTTESMAN M. Control of transcription termination [J]. Annu Rev Biochem, 1978, 47: 967-996.
[15] KANG J Y, MISHANINA T V, BELLECOURT M J, et al. RNA polymerase accommodates a pause RNA hairpin by global conformational rearrangements that prolong pausing [J]. Mol Cell, 2018, 69(5): 802-815.e5.

[16] GUO X, MYASNIKOV A G, CHEN J, et al. Structural basis for NusA stabilized transcriptional pausing [J]. Mol Cell, 2018, 69(5):
816-827.e4.
[17] NUDLER E, MUSTAEV A, GOLDFARB A, et al. The RNA-DNA hybrid maintains the register of transcription by preventing backtracking of RNA polymerase [J]. Cell, 1997, 89(1): 33-41.
[18] KOMISSAROVA N, KASHLEV M. Transcriptional arrest: Escherichia coli RNA polymerase translocates backward, leaving the 3´ end of the RNA intact and extruded [J]. Proc Natl Acad Sci USA, 1997, 94(5): 1755-1760.
[19] JU X, LI S, FROOM R, et al. Incomplete transcripts dominate the Mycobacterium tuberculosis transcriptome [J]. Nature, 2024,
627(8003): 424-430.
[20] PROSHKIN S, RAHMOUNI A R, MIRONOV A, et al. Cooperation between translating ribosomes and RNA polymerase in transcription elongation [J]. Science, 2010, 328(5977): 504-508.
[21] WEBSTER M W, WEIXLBAUMER A. Macromolecular assemblies supporting transcription-translation coupling [J]. Transcription,
2021, 12(4): 103-125.
[22] WEE L M, TONG A B, FLOREZ ARIZA A J, et al. A trailing ribosome speeds up RNA polymerase at the expense of transcript
fidelity via force and allostery [J]. Cell, 2023, 186(6): 1244-1262.e34.

[23] JACQUET M, KEPES A. Initiation, elongation and inactivation of lac messenger RNA in Escherichia coli studied by measurement
of its β-galactosidase synthesizing capacity in vivo [J]. J Mol Biol, 1971, 60(3): 453-472.
[24] GOURSE R L, CHEN A Y, GOPALKRISHNAN S, et al. Transcriptional responses to ppGpp and DksA [J]. Annu Rev Microbiol, 2018, 72: 163-184.
[25] MOLODTSOV V, SINEVA E, ZHANG L, et al. Allosteric effector ppGpp potentiates the inhibition of transcript initiation by DksA [J].
Mol Cell, 2018, 69(5): 828-839.e5.
[26] SANCHEZ-VAZQUEZ P, DEWEY C N, KITTEN N, et al. Genome-wide effects on Escherichia coli transcription from ppGpp
binding to its two sites on RNA polymerase [J]. Proc Natl Acad Sci USA, 2019, 116(17): 8310-8319.
[27] WANG B, ARTSIMOVITCH I. NusG, an ancient yet rapidly evolving transcription factor [J]. Front Microbiol, 2021, 11: 619618.
[28] SULLIVAN S L, WARD D F, GOTTESMAN M E. Effect of Escherichia coli NusG function on lambda N-mediated transcription antitermination [J]. J Bacteriol, 1992, 174(4): 1339-1344.
[29] MOONEY R A, SCHWEIMER K, RÖSCH P, et al. Two structurally independent domains of E. coli NusG create regulatory plasticity via distinct interactions with RNA polymerase and regulators [J]. J Mol Biol, 2009, 391(2): 341-358.
[30] BURMANN B, KNAUER S, SEVOSTYANOVA A, et al. An α helix to β barrel domain switch transforms the transcription factor
RfaH into a translation factor [J]. Cell, 2012, 150(2): 291-303.
[31] MCGARY K, NUDLER E. RNA polymerase and the ribosome: the close relationship [J]. Curr Opin Microbiol, 2013, 16(2): 112-117.
[32] PAN T, ARTSIMOVITCH I, FANG X W, et al. Folding of a large ribozyme during transcription and the effect of the elongation factor
NusA [J]. Proc Natl Acad Sci USA, 1999, 96(17): 9545-9550.
[33] STRAUß M, VITIELLO C, SCHWEIMER K, et al. Transcription is regulated by NusA: NusG interaction [J]. Nucleic Acids Res, 2016,
44(12): 5971-5982.
[34] MANDELL Z F, OSHIRO R T, YAKHNIN A V, et al. NusG is an intrinsic transcription termination factor that stimulates motility and
coordinates gene expression with NusA [J]. eLife, 2021, 10: e61880.
[35] ARTSIMOVITCH I, LANDICK R. Pausing by bacterial RNA polymerase is mediated by mechanistically distinct classes of signals
[J]. Proc Natl Acad Sci USA, 2000, 97(13): 7090-7095.
[36] MITRA P, GHOSH G, HAFEEZUNNISA M, et al. Rho protein: roles and mechanisms [J]. Annu Rev Microbiol, 2017, 71: 687-709.
[37] KRUPP F, SAID N, HUANG Y H, et al. Structural basis for the action of an all-purpose transcription anti-termination factor [J]. Mol
Cell, 2019, 74(1): 143-157.e5.
[38] WANG C, MOLODTSOV V, FIRLAR E, et al. Structural basis of transcription-translation coupling [J]. Science, 2020, 369(6509): 1359-1365.
[39] KOHLER R, MOONEY R A, MILLS D J, et al. Architecture of a transcribing-translating expressome [J]. Science, 2017, 356(6334):
194-197.
[40] KANG J Y, MOONEY R A, NEDIALKOV Y, et al. Structural basis for transcript elongation control by NusG family universal regulators [J]. Cell, 2018, 173(7): 1650-1662.e14.
[41] MOLODTSOV V, WANG C, KAELBER J T, et al. Structural basis of RfaH-mediated transcription-translation coupling [J/OL]. [2024-
03-11]. https://www.biorxiv.org/content/10.1101/2023.11.05.565726v1.full.pdf.
[42] ZUBER P K, ARTSIMOVITCH I, NANDYMAZUMDAR M, et al. The universally-conserved transcription factor RfaH is recruited to a
hairpin structure of the non-template DNA strand [J]. eLife, 2018, 7: 36349.
[43] FAN H, CONN A B, WILLIAMS P B, et al. Transcription–translation coupling: direct interactions of RNA polymerase with ribosomes and ribosomal subunits [J]. Nucleic Acids Res, 2017, 45(19): 11043-11055.
[44] DEMO G, RASOULY A, VASILYEV N, et al. Structure of RNA polymerase bound to ribosomal 30S subunit [J]. eLife, 2017, 6: e28560.
[45] WEBSTER M W, TAKACS M, ZHU C, et al. Structural basis of transcription-translation coupling and collision in bacteria [J]. Science, 2020, 369(6509): 1355-1359.
[46] O´REILLY F J, XUE L, GRAZIADEI A, et al. In-cell architecture of an actively transcribing-translating expressome [J]. Science, 2020, 369(6503): 554-557.
[47] JOHNSON G E, LALANNE J B, PETERS M L, et al. Functionally uncoupled transcription-translation in Bacillus subtilis [J]. Nature,
2020, 585(7823): 124-128.

[48] XIONG H B, PAN H M, LONG Q Y, et al. AtNusG, a chloroplast nucleoid protein of bacterial origin linking chloroplast transcriptional and translational machineries, is required for proper chloroplast gene expression in Arabidopsis thaliana [J]. Nucleic Acids Res, 2022, 50(12): 6715-6734.

文章导航

/