[1] 舒咬根, 欧阳钟灿. 生物分子马达 [J]. 物理, 2007, 36: 735.
[2] 黎明, 舒咬根. 生物分子马达[M]// 国家自然科学基金委员会, 中国科学院编. 中国学科发展战略•软凝聚态物理学. 北京: 科学出
版社, 2020.
[3] YILDIZ A, TOMISHIGE M, VALE R D, et al. Kinesin walks handover-hand [J]. Science, 2004, 303: 676-678.
[4] CARTER N J, CROSS R. Mechanics of the kinesin step [J]. Nature, 2005, 435: 308-312.
[5] LI M, OUYANG Z C, SHU Y G. Advances in the study of the mechanochemical coupling of kinesin I [J]. JMPB, 2018, 32:
1840001.
[6] HARRINGTON W F, RODGERS M E. Myosin [J]. Annu Rev Biochem, 1984, 53: 35-73.
[7] BURGESS S A, WALKER M L, SAKAKIBARA H, et al. Dynein structure and power stroke [J]. Nature, 2003, 421: 715-718.
[8] SUBRAMANYA H S, BIRD L E, BRANNIGAN J A, et al. Crystal structure of a DExx box DNA helicase [J]. Nature, 1996, 384: 379-
383.
[9] SHU Y G, SONG Y S, OUYANG Z C, et al. A general theory of kinetics and thermodynamics of steady-state copolymerization [J]. J Phys: Condens Mat, 2015, 27: 235105.
[10] SONG Y S, SHU Y G, ZHOU X, et al. Proofreading of DNA polymerase: a new kinetic model with higher-order terminal effects
[J]. J Phys: Condens Mat, 2017, 29: 025101.
[11] SMALE S T, KADONAGA J T. The RNA polymerase II core promoter [J]. Annu Rev Biochem, 2003, 72: 449-479.
[12] SHU Y G, LAI P Y. Systematic kinetics study of FoF1-ATPase: analytic results and comparison with experiments [J]. J Phys Chem B, 2008, 112: 13453.
[13] DAI L, XU Y, SU X, et al. Revealing atomic scale molecular diffusion of a plant transcription factor WRKY domain protein along
DNA [J]. PNAS, 2021, 118: e2102621118.
[14] 舒咬根, 欧阳钟灿. 转动分子马达:ATP合酶[J]. 自然杂志, 2007, 29: 249-254.
[15] SOWA Y, BERRY R M. Bacterial flagellar motor [J]. Q Rev Biophys, 2008, 41: 103-132.
[16] BUCK K W. Replication of tobacco mosaic virus RNA [J]. Philos Trans R Soc Lond B: Biol Sci, 1999, 354: 613-627.
[17] VALEGÅRD K, MURRAY J B, STOCKLEY P G, et al. Crystal structure of an RNA bacteriophage coat protein-operator complex
[J]. Nature, 1994, 371: 623-626.
[18] RAO V B, FEISS M. The bacteriophage DNA packaging motor [J]. Annu Rev Genet, 2008, 42: 647-681.
[19] CASJENS S R. The DNA-packaging nanomotor of tailed
bacteriophages [J]. Nat Rev Microbiol, 2011, 9: 647-657.
[20] EARNSHAW W C, CASJENS S R. DNA packaging by the doublestranded DNA bacteriophages [J]. Cell, 1980, 21: 319-331.
[21] SMITH D E, TANS S J, SMITH S B, et al. The bacteriophage φ29 portal motor can package DNA against a large internal force [J]. Nature, 2001, 413: 748-752.
[22] CAPPELLO G, PIEROBON P, SYMONDS C, et al. Myosin V stepping mechanism [J]. PNAS, 2007, 104: 15328.
[23] SIMPSON A A, TAO Y, LEIMANP G, et al. Structure of the bacteriophage φ29 DNA packaging motor [J]. Nature, 2000, 408:
745-750.
[24] OLIA A S, PREVELIGE P E JR, JOHNSON J E, et al. Threedimensional structure of a viral genome-delivery portal vertex [J].
Nat Struct Mol Biol, 2011, 18: 597-603.
[25] KANAMARU S, KONDABAGIL K, ROSSMANN M G, et al. The functional domains of bacteriophage T4 terminase [J]. J Biol Chem, 2004, 279: 40795-40801.
[26] SUN S, KONDABAGIL K, DRAPER B, et al. The structure of the phage T4 DNA packaging motor suggests a mechanism dependent on electrostatic forces [J]. Cell, 2008, 135: 1251-1262.
[27] YANG Y X, YANG P, WANG N, et al. Architecture of the herpesvirus genome packaging complex and implications for DNA
translocation [J]. Protein Cell, 2020, 11: 339-351.
[28] GUO P X, DRIVER D, ZHAO Z Y, et al. Controlling the revolving and rotating motion direction of asymmetric hexameric nanomotor by arginine finger and channel chirality [J]. ACS Nano, 2019, 13: 6207-6223.
[29] SHU Y G, CHENG X L. Direct structural evidence supporting a revolving mechanism in DNA packaging motors [J]. Biophys Rep,
2020, 6: 155-158.
[30] HENDRIX R W. Symmetry mismatch and DNA packaging in large bacteriophages [J]. PNAS, 1978, 75: 4779-4783.
[31] GUASCH A, POUS J, IBARRA B, et al. Detailed architecture of a DNA translocating machine: the high-resolution structure of the bacteriophage φ29 connector particle [J]. J Mol Biol, 2002, 315: 663-676.
[32] LEBEDEV A A, KRAUSEM H, ISIDROA L, et al. Structural framework for DNA translocation via the viral portal protein [J].
EMBOJ, 2007, 26: 1984-1994.
[33] HUGEL T, MICHAELIS J, HETHERINGTON C L, et al. Experimental test of connector rotation during DNA packaging into
bacteriophage φ29 capsids [J]. PLoS Biol, 2007, 5: e59.
[34] MITCHELL M S, MATSUZAKI S, IMAI S, et al. Sequence analysis of bacteriophage T4 DNA packaging/terminase genes 16
and 17 reveals a common ATPase center in the large subunit of viral terminases [J]. Nucleic Acids Res, 2002, 30: 4009-4021.
[35] GUO P, PETERSON C, ANDERSON D. Prohead and DNA-gp3-dependent ATPase activity of the DNA packaging protein gp16 of
bacteriophage φ29 [J]. J Mol Biol, 1987, 197: 229-236.
[36] MORITA M, TASAKA M, FUJISAWA H. DNA packaging ATPase of bacteriophage T3 [J]. Virology, 1993, 193: 748-752.
[37] YASUDA R, NOJI H, KINOSITAJR K, et al. F1-ATPase is a highly efficient molecular motor that rotates with discrete 120 steps [J]. Cell, 1998, 93: 1117-1124.
[38] SHU Y G, OUYANG Z C. Biomotor is not a heat engine [J]. Biophys Rev Lett, 2022, 17: 43-50.
[39] NADAL M, MAS P J, BLANCO A G, et al. Structure and inhibition of herpesvirus DNA packaging terminase nuclease domain [J].
PNAS, 2010, 107: 16078-16083.
[40] FENG Y X, ZHANG Y C, YING C F, et al. Nanopore-based fourthgeneration DNA sequencing technology [J]. Genomics, Proteomics & Bioinformatics, 2015, 13: 4-16.
[41] SCHNEIDER G, DEKKER C. DNA sequencing with nanopores [J]. Nat Biotechnol, 2012, 30: 326-328.
[42] WENDELL D, JING P, GENG J, et al. Translocation of doublestranded DNA through membrane-adapted phi29 motor protein
nanopores [J]. Nature Nanotechnology, 2009, 4: 765-772.
|