Biological membranes are platforms for signal transduction and material transport in cellular activities. In recent years, the applications of multidisciplinary approaches have shed new lights on the mechanisms of membrane protein-mediated membrane fusion and division, vesicle formation and secretion, and lipid metabolism etc. For example, the single-molecule optical tweezers,
which accurately and quantitatively detect the interactions between proteins and membranes, provide a powerful approach to understand the regulatory mechanisms of such interactions at spatiotemporal level. In addition, DNA nanotechnology, which uses DNA molecules to construct programmable and self-assembled nanostructures, provides molecular devices that can be precisely
modified and functionalized. The hydrophobically modified DNA nanostructures can act on phopholipid bilayers or biological membranes to modify lipid properties, modulate membrane structures, control membrane parameters and regulate transmembrane
communications. The advances in these techniques will contribute to the mechanistic study of cell biology, the analysis and detection of secretory vesicles, the optimization of artificial liposome preparation, and the development of new drugs and carriers. These techniques will also provide novel systems for synthetic biology, chemical biology, and molecular medicine.