自然杂志 ›› 2025, Vol. 47 ›› Issue (6): 427-436.doi: 10.3969/j.issn.0253-9608.2025.05.012

• 特约专稿 • 上一篇    下一篇

基于里德伯原子微波电场测量的研究进展

王勤霞①②,张天才   

  1. ①山西大学 光量子技术与器件全国重点实验室,太原 030006;②山西大学 科学技术史研究所,太原 030006
  • 收稿日期:2025-06-21 出版日期:2025-12-25 发布日期:2025-12-17
  • 通讯作者: 张天才,研究方向:腔量子电动力学、量子精密测量等。
  • 作者简介:
  • 基金资助:
    山西省科技战略研究专项(202404030401071) 、中国博士后科学基金第77批面上资助(2025M771679)和国家资助博士后研究计划(GZC20240960)

Recent advances in microwave electric field measurement based on Rydberg atoms

WANG Qinxia,ZHANG Tiancai   

  1.  ① State Key Laboratory of Quantum Optics Technologies and Devices, Shanxi University, Taiyuan 030006, China; ② Institute for History of Science and Technology, Shanxi University, Taiyuan 030006, China
  • Received:2025-06-21 Online:2025-12-25 Published:2025-12-17

摘要:

微波电场在无线通信、雷达探测、导航定位和量子信息等领域发挥着重要作用,其测量灵敏度直接决定了系统对微弱信号的探测能力与应用性能。灵敏度通常用于表征测量系统对被测物理量微小变化的响应能力,是衡量测量精度与系统性能的核心指标。传统微波测量技术受限于天线尺寸、金属结构对电场的扰动及热噪声影响,难以实现对极弱信号的高精度探测。近年来,里德伯原子因其较大的电偶极矩和高极化率,对微波电场表现出极高的敏感性,可显著提升测量系统对微弱电场的响应能力,突破传统技术的性能瓶颈,展现出广阔的应用前景。本文系统综述了基于里德伯原子的微波电场测量技术的基本原理与研究进展,重点介绍了灵敏度提升的物理机制、关键实验突破及腔增强等新兴方法,并分析了当前面临的挑战与未来的发展方向,以期为相关研究与应用提供参考。

关键词:

Abstract:

Microwave electric fields play a vital role in a wide range of applications, including wireless communications, radar detection, navigation, and quantum information. The sensitivity of microwave field measurements directly determines a system’s capability to detect weak signals and its overall performance. Measurement sensitivity generally refers to a system’s ability to respond to minute variations in the measured physical quantity, serving as a key metric of precision and system performance. Conventional microwave measurement techniques are limited by antenna dimensions and the perturbation introduced by metallic structures, making it difficult to achieve high-precision detection of extremely weak signals. In recent years, Rydberg atoms—owing to their large electric dipole moments and high polarizability—have demonstrated exceptional sensitivity to microwave electric fields. This has significantly enhanced the system’s response to weak fields, overcoming the limitations of traditional approaches and offering promising prospects for future applications. This paper presents a comprehensive review of the principles and recent advances in Rydberg atom-based microwave electrometry, with a focus on physical mechanisms for sensitivity enhancement, key experimental breakthroughs, and emerging techniques such as cavity enhancement. Current challenges and future directions are also discussed to provide insights for further research and practical applications in this field.