自然杂志 ›› 2025, Vol. 47 ›› Issue (6): 477-487.doi: 10.3969/j.issn.0253-9608.2025.06.015

• 科技进展 • 上一篇    下一篇

纳米层状AlxCoCuFeNi高熵合金强度和塑性的分子动力学模拟

陈兆彦,林星睿,孙雅轩,张文宇,刁可欣,钱文星,王乙同,陈帅
  

  1. ①上海大学 钱伟长学院,上海 200444;②上海大学 材料基因组工程研究院,上海 200444
  • 收稿日期:2025-06-23 出版日期:2025-12-25 发布日期:2025-12-18

Molecular dynamics simulation on strength and plasticity of nano-layered AlxCoCuFeNi high-entropy alloy

CHEN Zhaoyan, LIN Xingrui, SUN Yaxuan, ZHANG Wenyu, DIAO Kexin, QIAN Wenxing, WANG Yitong, CHEN Shuai
  

  1. ① QianWeiChang College, Shanghai University, Shanghai 200444, China; ② Materials Genome Institute of Shanghai University, Shanghai 200444, China
  • Received:2025-06-23 Online:2025-12-25 Published:2025-12-18

摘要:

在高熵合金的设计中,纳米层状结构与其力学性能之间的关联是一个至关重要的考量因素。深入理解这一关系有助于优化合金性能,从而满足特定应用需求。本文研究了具有不同纳米层状结构的AlxCoCuFeNi高熵合金的力学性能,构建出一种高铝(HAl)和低铝(LAl)浓度层交替排列的高熵合金纳米层状结构。采用分子动力学模拟方法,详细研究了该结构的力学性能。研究结果表明,在AlxCoCuFeNi高熵合金中,影响材料强度和进入塑性区域的关键因素是HAl层的Al含量。在HAl层的Al含量不变的情况下,随着LAl层Al含量增加塑性应变平台长度呈现缩短趋势,材料会更早进入失效区域。同时,本文还探究了塑性区应力平台斜率的影响因素及塑性区出现应力平台的原因。结果表明,位错的穿层现象是影响塑性区应力平台斜率正负的重要因素,而应力平台的产生主要受合金各层之间Al含量差异的影响。这项工作能为纳米层状高熵合金的设计提供指导。

关键词:

Abstract:

In the design of high-entropy alloys, the correlation between the nano-layered structure and its mechanical properties is a crucial consideration factor. A deep understanding of this relationship can help optimize alloy performance to meet the needs of specific application scenarios. In this study, we investigated the mechanical properties of AlxCoCuFeNi high-entropy alloys with different nano-layered structures and constructed a high entropy alloy nano-layered structure with alternating high aluminum (HAl) and low aluminum (LAl) concentration layers. We conducted a detailed study on the mechanical properties of this structure using molecular dynamics simulations. The research results reveal that the key factor affecting material strength and entering the plastic zone in AlxCoCuFeNi high-entropy alloys is the aluminum content in the HAl layer. And with the same aluminum content in the HAl layer, as the aluminum content in the LAl layer increases, the length of the plastic strain plateau shows a trend of shortening and entering the failure zone earlier. Meanwhile, we also investigated the influencing factors of the slope of the stress plateau in the plastic zone and the reasons for the occurrence of stress plateau in the plastic zone. The results indicate that the interlayer phenomenon of dislocations is an important factor affecting the positive and negative slope of the stress plateau in the plastic zone, and the generation of the stress plateau is mainly influenced by the difference in aluminum concentration between the layers of the alloy. This work can provide guidance for the design of nano-layered high-entropy alloys.