自然杂志 ›› 2026, Vol. 48 ›› Issue (1): 33-40.doi: 10.3969/j.issn.0253-9608.2026.01.005

• 专题综述 • 上一篇    下一篇

骨类器官:从仿生构建到精准医疗

张晨①②③④,白龙①②③④⑤,苏佳灿①②④⑥   

  1. ①上海大学 转化医学研究院,骨类器官研究中心,上海 200444;②上海大学 医工交叉研究院,上海 200444;③上海大学 医学院,上海 200444;④转化医学国家科学中心(上海) 上海大学分中心,上海 200444;⑤上海大学 温州研究院,浙江 温州 325000;⑥上海交通大学医学院附属新华医院 骨科,上海 200092
  • 收稿日期:2025-09-09 出版日期:2026-02-25 发布日期:2026-02-06
  • 基金资助:
    国家自然科学基金项目(32471396、82230071、82172098)、上海市“科技创新行动计划”实验动物研究领域项目(23141900600)、上海市临床研究计划(SHDC2023CRT01)、上海市医疗器械创新应用示范项目(23SHS05700)、中国科协青年人才托举工程(YESS20230049)

Bone organoids: from biomimetic construction to precision medicine

ZHANG Chen①②③④, BAI Long①②③④⑤, SU Jiacan①②④⑥   

  1. ① Bone Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; ② Institute for Interdisciplinary Medicine and Engineering, Shanghai University, Shanghai 200444, China; ③ School of Medicine, Shanghai University, Shanghai 200444, China; ④ National Center for Translational Medicine (Shanghai)-SHU Branch, Shanghai University, Shanghai 200444, China; ⑤ Wenzhou Institute of Shanghai University, Wenzhou 325000, Zhejiang Province, China; ⑥ Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
  • Received:2025-09-09 Online:2026-02-25 Published:2026-02-06

摘要: 伴随着全球人口老龄化进程加速,骨质疏松症、骨关节炎、骨肿瘤等骨相关疾病发病率显著攀升,对公众健康和生活质量构成严重威胁,骨健康问题已成为全球公共卫生领域的重大挑战。传统二维细胞培养模型虽然在细胞增殖、分化及分子机制研究中具有操作简便和可控性优势,但其缺乏三维结构与复杂生理微环境,难以真实模拟体内骨组织的结构与功能。动物模型虽能在一定程度上再现人类生理特征,却受限于物种差异性、临床转化潜力有限以及伦理问题。骨类器官(bone organoid)作为类器官研究领域前沿成果,能在体外三维环境中通过干细胞自组织形成,高度模拟骨组织的结构与功能。相较于传统模型,骨类器官不仅在形态和功能上更接近真实骨组织,还能重现骨形成、血管化及免疫调节等关键生理病理过程,为研究骨发育机制、疾病发生机理及治疗策略提供更为精准的研究平台。本文系统梳理骨类器官发展历程与构建策略,并重点探讨其在疾病机制解析、骨缺损修复、药物筛选及个性化医疗等领域的应用前景,同时展望其在精准医疗与临床转化中的潜在价值。

关键词: 骨类器官, 构建策略, 病理模型, 再生医学, 精准医疗

Abstract: With the accelerating process of global population aging, the incidence of bone-related diseases such as osteoporosis, osteoarthritis, and bone tumors is markedly increasing, posing serious threats to public health and quality of life. Bone health therefore has been a major challenge in global public health. Traditional cell culture provides advantages of simplicity and controllability in studying cell proliferation, differentiation, and molecular mechanisms, but it lacks the three-dimensional structure and complex physiological microenvironment required to accurately mimic the architecture and functions of bone tissue in vivo. Animal models can partially reproduce physiological features, yet they are limited by species differences, restricted translational potential, and ethical concerns. Bone organoids, as a cutting-edge achievement in organoid research, are generated through the self-organization of stem cells under a three-dimensional in vitro environment, and they closely recapitulate the structure and function of bone tissue. Compared with conventional models, bone organoids not only better resemble native bone tissue in morphology and function, but also reproduce key physiological and pathological processes such as bone formation, vascularization, and immune regulation. This provides a more precise platform for investigating bone development, disease mechanisms, and therapeutic strategies. This review systematically summarizes the development and construction strategies of bone organoids, highlights their applications in disease modeling, bone defect repair, drug screening, and personalized medicine, and further discusses their potential value in precision medicine and clinical translation.