自然杂志 ›› 2011, Vol. 33 ›› Issue (4): 198-201.

• 专题综述 • 上一篇    下一篇

碳基纳米管的生长机理、结构调控及能源导向的功能化研究*

胡征   

  1. 教授,南京大学化学化工学院介观化学教育部重点实验室,南京 210093
  • 收稿日期:2011-07-20 修回日期:2011-08-05 出版日期:2011-08-20 发布日期:2011-08-25
  • 基金资助:

    *国家自然科学基金重点项目(20833002); 纳米研究重大科学研究计划项目 (2007CB936302)

Growth Mechanism, Structural Regulation and EnergyOriented Functionalization of CarbonBased Nanotubes

HU Zheng   

  1. Professor, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China  
  • Received:2011-07-20 Revised:2011-08-05 Online:2011-08-20 Published:2011-08-25

摘要: 简要介绍了以苯为原料生长碳纳米管的六元环机理,运用该机理的基本思想设计制备了N,B掺杂的碳基纳米管,方便地构建了高分散的铂基纳米复合催化剂,在燃料电池电极催化反应(甲醇氧化、氧还原)中具有优良的电催化性能。富电子N或缺电子B的掺杂均可将碳纳米管转变为优良的无金属氧还原催化剂。这些研究为设计和开发替代或优化利用贵金属的高性能燃料电池催化剂提供了新的思路、方法和途径,展示了碳基纳米管在新型能源材料领域的广阔前景,也体现了基础研究在科技创新中的重要作用。

关键词: 碳基纳米管, 生长机理, 掺杂, 能源导向的功能化, 燃料电池电极催化剂

Abstract: This article presents a brief introduction about the sixmemberedringbased growth mechanism of carbon nanotubes (CNTs) with benzene precursor. The mechanism was successfully applied to the design and synthesis of N or Bdoped CNTs with corresponding heterocyclic precursors. The doped CNTs can act as the unique supports for the convenient construction of Ptbased nanocomposite catalysts with high dispersion, which show superior performance in electrocatalytic reactions of methanol oxidation and oxygen reduction. It is also revealed that doping with either electronrich N or electrondeficient B could turn CNTs into the novel metalfree catalyst for oxygen reduction with excellent performance. These progresses provide the new idea and method for the design and development of the advanced electrocatalysts to make full use of or even substitute for the precious Pt species, which exhibits the great potential of carbonbased nanotubes in energy material field. The significance of the basic research on scientific innovation was also demonstrated through this study.

Key words: carbonbased nanotube, growth mechanism, doping, energyoriented functionalization, fuel cell electrocatalyst