自然杂志 ›› 2017, Vol. 39 ›› Issue (5): 320-326.

• 专题综述 • 上一篇    下一篇

块体金属玻璃过冷液相的高热稳定性与非晶形成能力的原 子机制

王庆,陆丹玲,杨勇,刘锦川,吕坚   

  1. 1上海大学材料研究所,微结构中心实验室,上海 200072; 2香港城市大学机械与生物医学工程系,深圳研究院先进结构材料研究中心,广东 深圳 518057
  • 收稿日期:2017-09-11 修回日期:2017-09-30 出版日期:2017-10-25 发布日期:2017-12-18
  • 通讯作者: 王庆,E-mail: qing-wang@hotmail.com
  • 作者简介:刘锦川,美国工程院院士,中国工程院外藉院士。研究方向:金属、合金、纳米材料、金属间化合物及块体非晶合金 物理冶金及力学行为;微结构与相变;高温结构材料、贵金属、钛合金、金属基复合材料设计及先进工艺. 法国国家技术科学院院士,香港工程科学院院士。 吕坚, 研究方向:生物材料与生物力学;先进材料与工艺集成 及计算模拟和辅助设计;纳米材料、先进结构材料制备工艺及力学表征;实验力学与残余应力
  • 基金资助:

    国家基础研究计划 (2015CB856800)和国家自然科学基金面上项目(51171099)资助

The atomic scale mechanism for the enhanced thermal stability and glass forming ability of bulk metallic glass forming supercooled liquids

WANG Qing, LU Danling, YANG Yong, LIU Chain Tsuan, Lü Jian   

  1. 1Laboratory for Structures, Institute of Materials, Shanghai University, Shanghai 200072, China; 2Department of Mechanical and Biomedical Engineering, Center for Advanced Structural Materials, Research Institute (Shenzhen), City University of Hong Kong, Hong Kong SAR, Shenzhen 518057, Goangdong Province, China
  • Received:2017-09-11 Revised:2017-09-30 Online:2017-10-25 Published:2017-12-18

摘要:

过去几十年里,从原子尺度理解块体金属玻璃形成过冷液相特性与微结构的关系吸引了材料学家和凝聚态物理学家极 大的关注,是此类先进工程金属材料得到实际开发应用的关键之所在。本文综述了前期有关块体金属玻璃有序原子团簇结 构随热处理或微量元素添加,演化及其对过冷液相热稳定性、晶化行为和玻璃形成能力影响的研究成果;并聚焦在块体金 属玻璃过冷液相中的两类不同原子团簇,即类二十面体原子团簇和类晶体原子团簇。这两类原子团簇的共同存在是块体金 属玻璃高热稳定性和纳米晶化的重要因素。通过微合金可以调控过冷金属液相中原子团簇的结构和体积分数,从而进一步 推进它们的实际工程或功能性运用。

关键词: 块体金属玻璃形成过冷液相, 热稳定性, 玻璃形成能力, 原子机制

Abstract:

Over past decades, large efforts have been devoted to understand the properties of bulk metallic glass (BMG) forming supercooled metallic liquids at atomic level, which is of technological and fundamental importance for the development of advanced engineering metallic material. In this paper, we summarize the previous studies on the structural evolutions of atomic clusters with thermal annealing or minor element addition, which strongly affect the thermal stability, crystallization behavior and glass forming ability of supercooled metallic liquids. The focus is centered on two kinds of atomic clusters, i.e., icosahedral-like and crystal- like atomic clusters. The coexistence of these different atomic clusters is found to be a very important factor for both high thermal stability and nanocrystallization of BMG-forming supercooled liquids. Moreover, through minor element addition, one could tailor the structure and volume fraction of atomic clusters in BMG-forming liquids, furthering their development for practical engineering and/ or functional applications.

Key words: bulk metallic glass forming supercooled liquid, thermal ability, glass forming ability, atomic-scale mechanism