专题综述

趋化因子受体的结构与信号转导机制

展开
  • 上海科技大学 iHuman研究所,上海 201210 

收稿日期: 2021-10-01

  网络出版日期: 2021-02-25

Structural and signaling mechanism of chemokine receptors

Expand
  • iHuman Institute, ShanghaiTech University, Shanghai 201210, China

Received date: 2021-10-01

  Online published: 2021-02-25

摘要

趋化因子(chemokine)及趋化因子受体(chemokine receptor)在介导细胞迁移、增殖和抵御病原体入侵过程中发挥重要作用,并且与免疫环境中炎症和癌症的发生发展密切相关。人体中有20多种趋化因子受体和近50种趋化因子。一种趋化因子可以结合多种受体,反之亦然,它们相互作用构成了复杂的趋化因子调控网络。对趋化因子及其受体的三维结构的解析,对于我们更深入理解趋化因子受体家族的激活机制与药理功能具有非常重要的意义。文章总结了已解析的与内 源性趋化因子配体或其类似物结合的趋化因子受体结构,分析了趋化因子激活相应趋化因子受体的分子机制,以及对于抗 癌药物开发设计的重要性。

本文引用格式

刘凯雯, 刘志杰, 华甜 . 趋化因子受体的结构与信号转导机制[J]. 自然杂志, 2021 , 43(1) : 18 -24 . DOI: 10.3969/j.issn.0253-9608.2021.01.003

Abstract

Chemokine and chemokine receptor play important roles in cell migration, proliferation and resisting invasion, thus closely related with multiple fundamental biological processes and disease development in immune environment, such as inflammation and cancer. There are more than 20 different chemokine receptors and nearly 50 chemokines in human body. One chemokine can bind multiple receptors and vice versa. Their interaction forms a complex chemokine regulatory network. Analysis of the three-dimensional structures of chemokines and their receptors will further improve our understanding of the activation mechanism and pharmacological functions of the chemokine receptor family. Here, we briefly review the solved structure of chemokine receptors bound with chemokine ligands or their analogs, and analyze the structure and activation mechanism of chemokine receptors, and indicate the importance of the anticancer drug development of chemokine receptor family. 

参考文献

[1] PIERCE K L, PREMONT R T, LEFKOWITZ R J. Seventransmembrane receptors [J]. Nat Rev Mol Cell Biol, 2002, 3(9): 639-650. [2] HAUSER A S, ATTWOOD M M, RASK-ANDERSEN M, et al. Trends in GPCR drug discovery: new agents, targets and indications [J]. Nat Rev Drug Discov, 2017, 16(12): 829-842.

[3] MANTOVANI A, SAVINO B, LOCATI M, et al. The chemokine system in cancer biology and therapy [J]. Cytokine Growth Factor Rev, 2010, 21(1): 27-39. 

[4] LE Y, ZHOU Y, IRIBARREN P, et al. Chemokines and chemokine receptors: their manifold roles in homeostasis and disease [J]. Cell Mol Immunol, 2004, 1(2): 95-104.

 [5] BIZZARRI C, BECCARI A R, BERTINI R, et al. ELR+ CXC chemokines and their receptors (CXC chemokine receptor 1 and CXC chemokine receptor 2) as new therapeutic targets [J]. Pharmacol Ther, 2006, 112(1): 139-149.

 [6] ROLLINS B J. Chemokines [J]. Blood, 1997, 90(3): 909-928. 

[7] BAGGIOLINI M. Chemokines and leukocyte traffic [J]. Nature, 1998, 392(6676): 565-568. 

[8] GUO F, LONG L, WANG J, et al. Insights on CXC chemokine receptor 2 in breast cancer: An emerging target for oncotherapy [J]. Oncol Lett, 2019, 18(6): 5699-5708. 

[9] QIN L, KUFAREVA I, HOLDEN LG, et al. Structural biology. Crystal structure of the chemokine receptor CXCR4 in complex with a viral chemokine [J]. Science, 2015, 347(6226): 1117-1122.

 [10] BURG J S, INGRAM J R, VENKATAKRISHNAN A J, et al. Structural biology. Structural basis for chemokine recognition and activation of a viral G protein-coupled receptor [J]. Science, 2015, 347(6226): 1113-1117.

 [11] ZHENG Y, HAN G W, ABAGYAN R, et al. Structure of CC chemokine receptor 5 with a potent chemokine antagonist reveals mechanisms of chemokine recognition and molecular mimicry by HIV [J]. Immunity, 2017, 46(6): 1005-1017. e5. 

[12] WASILKO D J, JOHNSON Z L, AMMIRATI M, et al. Structural basis for chemokine receptor CCR6 activation by the endogenous protein ligand CCL20 [J]. Nat Commun, 2020, 11(1): 3031. 

[13] LIU K, WU L, YUAN S, et al. Structural basis of CXC chemokine receptor 2 activation and signalling [J]. Nature, 2020, 585(7823): 135-140.

[14] WU B, CHIEN E Y, MOL C D, et al. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists [J]. Science, 2010, 330(6007): 1066-1071.

[15] TAN Q, ZHU Y, LI J, et al. Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex [J]. Science, 2013, 341(6152): 1387-1390.

[16] OSWALD C, RAPPAS M, KEAN J, et al. Intracellular allosteric antagonism of the CCR9 receptor [J]. Nature, 2016, 540(7633): 462-465.

[17] ZHENG Y, QIN L, ZACARIAS N V, et al. Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists [J]. Nature, 2016, 540(7633): 458-461.

[18] JAEGER K, BRUENLE S, WEINERT T, et al. Structural basis for allosteric ligand recognition in the human CC chemokine receptor 7 [J]. Cell, 2019, 178(5): 1222-1230. e10.

 [19] KLEIST A B, GETSCHMAN A E, ZIAREK J J, et al. New paradigms in chemokine receptor signal transduction: moving beyond the two-site model [J]. Biochem Pharmacol, 2016, 114: 53- 68. 

[20] SCHOLTEN D J, CANALS M, MAUSSANG D, et al. Pharmacological modulation of chemokine receptor function [J]. Br J Pharmacol, 2012, 165(6): 1617-1643.

 [21] CRUMP M P, GONG J H, LOETSCHER P, et al. Solution structure and basis for functional activity of stromal cell-derived factor-1; dissociation of CXCR4 activation from binding and inhibition of HIV-1 [J]. EMBO J, 1997, 16(23): 6996-7007. 

[22] PRADO G N, SUETOMI K, SHUMATE D, et al. Chemokine signaling specificity: Essential role for the N-terminal domain of chemokine receptors [J]. Biochemistry, 2007, 46(31): 8961-8968. 

[23] ROUMEN L, SCHOLTEN D J, DE KRUIJF P, et al. C(X)CR in silico: Computer-aided prediction of chemokine receptor-ligand interactions [J]. Drug Discov Today Technol, 2012, 9(4): e281-291. 

[24] KOEHL A, HU H, MAEDA S, et al. Structure of the micro-opioid receptor-Gi protein complex [J]. Nature, 2018, 558(7711): 547-552.

 [25] GARCIA-NAFRIA J, NEHME R, EDWARDS P C, et al. Cryo-EM structure of the serotonin 5-HT1B receptor coupled to heterotrimeric Go [J]. Nature, 2018, 558(7711): 620-623. 

[26] DRAPER-JOYCE C J, KHOSHOUEI M, THAL D M, et al. Structure of the adenosine-bound human adenosine A1 receptor-Gi complex [J]. Nature, 2018, 558(7711): 559-563. 

[27] MAEDA S, QU Q, ROBERTSON M J, et al. Structures of the M1 and M2 muscarinic acetylcholine receptor/G-protein complexes [J]. Science, 2019, 364(6440): 552-557. 

[28] HUA T, LI X, WU L, et al. Activation and signaling mechanism revealed by cannabinoid receptor-Gi complex structures [J]. Cell, 2020, 180(4): 655-665. e18. 

[29] KRISHNA KUMAR K, SHALEV-BENAMI M, ROBERTSON M J, et al. Structure of a signaling cannabinoid receptor 1-G protein complex [J]. Cell, 2019, 176(3): 448-458. e12. 

[30] XING C, ZHUANG Y, XU T H, et al. Cryo-EM Structure of the human cannabinoid receptor CB2-Gi signaling complex [J]. Cell, 2020, 180(4): 645-654. e13.

 [31] RASMUSSEN S G F, DEVREE B T, ZOU Y, et al. Crystal structure of the β2 adrenergic receptor-Gs protein complex [J]. Nature, 2011, 477(7366): 549-555.

 [32] MURPHY P M, TIFFANY H L. Cloning of complementary DNA encoding a functional human interleukin-8 receptor. Science. 1991. 253: 1280-1283 [J]. J Immunol, 2009, 183(5): 2898-2901. 

[33] NASSER M W, RAGHUWANSHI S K, GRANT D J, et al. Differential activation and regulation of CXCR1 and CXCR2 by CXCL8 monomer and dimer [J]. J Immunol, 2009, 183(5): 3425- 3432.

文章导航

/