专题综述

G蛋白偶联受体的共同激活机制

展开
  • ①复旦大学 基础医学院,上海 200032;②上海科技大学 iHuman研究所,上海 201210;③上海科技大学 生命科 学与技术学院,上海 201210 

收稿日期: 2020-10-01

  网络出版日期: 2021-02-25

Common activation mechanism of GPCR

Expand
  • ①School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; ②iHuman Institute, ShanghaiTech University, Shanghai 201210, China; ③School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China

Received date: 2020-10-01

  Online published: 2021-02-25

摘要

G蛋白偶联受体(G protein-coupled receptor, GPCR)构成人体中最庞大的膜蛋白家族,也是最重要的一类药物靶 标。随着GPCR结构解析技术的突破,目前已破解八十余个受体的400多个结构,揭示出GPCR复杂多样的配体结合模式和 跨膜信号转导机制。近年来,残基相互作用计算已实现对GPCR构象变化的精细描述,揭示出A家族GPCR存在共同的激活 机制。文章简要回顾GPCR激活机制研究的方法和创新点,并对A家族GPCR共同激活机制如何推动功能研究和药物研发进行展望。

本文引用格式

周庆同, 戴之卓, 赵素文 . G蛋白偶联受体的共同激活机制[J]. 自然杂志, 2021 , 43(1) : 45 -52 . DOI: 10.3969/j.issn.0253-9608.2021.01.007

Abstract

G protein-coupled receptor (GPCR) family is the largest and most diverse group of membrane receptors in eukaryotes. By mediating a wide variety of physiological functions, GPCRs are important drug targets with around 500 marketed drugs. The breakthrough of GPCR structural studies leads to the determinations of over 400 structures, which highlights the diversified ligandbinding modes and signal transduction mechanisms across GPCRs. In recent years, a common activation mechanism of class A GPCRs has been discovered, by using residue-residue contact score (RRCS) that can quantitatively describes the rearrangements of residue contacts upon receptor activation. Here, we briefly summarize the approaches utilized in GPCR activation mechanism, and also discuss the significance of understanding GPCR activation mechanism on functional studies and drug discovery. 

参考文献

[1] VENKATAKRISHNAN A J, DEUPI X, LEBON G, et al. Molecular signatures of G-protein-coupled receptors [J]. Nature, 2013, 494(7436): 185-194.

[2] KATRITCH V, CHEREZOV V, STEVENS R C. Structure-function of the G protein-coupled receptor superfamily [J]. Annual Review of Pharmacology and Toxicology, 2013, 53: 531-556.

[3] HAUSER A S, CHAVALI S, MASUHO I, et al. Pharmacogenomics of GPCR drug targets [J]. Cell, 2018, 172(1/2): 41-54. 

[4] HAUSER A S, ATTWOOD M M, RASK-ANDERSEN M, et al. Trends in GPCR drug discovery: new agents, targets and indications [J]. Nat Rev Drug Discov, 2017, 16 (12): 829-842. 

[5] LEFKOWITZ R J. A brief history of G-protein coupled receptors (Nobel Lecture) [J]. Angew Chem Int Ed Engl, 2013, 52 (25), 6366- 6378. 

[6] WEIS W I, KOBILKA B K. The molecular basis of G proteincoupled receptor activation [J]. Annual Review of Biochemistry, 2018, 87: 897-919.

[7] THAL D M, GLUKHOVA A, SEXTON P M, et al. Structural insights into G-protein-coupled receptor allostery [J]. Nature, 2018, 559(7712): 45-53. 

[8] HUA T, VEMURI K, PU M, et al. Crystal structure of the human cannabinoid receptor CB1 [J]. Cell, 2016, 167 (3): 750-762.

 [9] HUA T, LI X, WU L, et al. Activation and signaling mechanism revealed by cannabinoid receptor-Gi complex structures [J]. Cell, 2020, 180(4): 655-665.

 [10] 张浩楠, 吴蓓丽. G蛋白偶联受体的结构生物学研究[J]. 自然杂 志,2016, 38(3): 193-199.

[11] ROSENBAUM D M, CHEREZOV V, HANSON M A, et al. GPCR engineering yields high-resolution structural insights into β2- adrenergic receptor function [J]. Science, 2007, 318(5854): 1266- 1273.

[12] RASMUSSEN S G, DEVREE B T, ZOU Y, et al. Crystal structure of the β2 adrenergic receptor-Gs protein complex [J]. Nature, 2011, 477(7366): 549-555. 

[13] KANG Y, ZHOU X E, GAO X, et al. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser [J]. Nature, 2015, 523(7562): 561-567. 

[14] ZHANG Y, SUN B, FENG D, et al. Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein [J]. Nature, 2017, 546(7657): 248-253. 

[15] GARCIA-NAFRIA J, TATE C G. Cryo-electron microscopy: moving beyond X-ray crystal structures for drug receptors and drug development [J]. Annual Review of Pharmacology and Toxicology, 2020, 60: 51-71. 

[16] ZHANG H, QIAO A, YANG D, et al. Structure of the full-length glucagon class B G-protein-coupled receptor [J]. Nature, 2017, 546(7657): 259-264.

[17] SONG G, YANG D, WANG Y, et al. Human GLP-1 receptor transmembrane domain structure in complex with allosteric modulators [J]. Nature, 2017, 546(7657): 312-315.

[18] ZHAO L H, MA S, SUTKEVICIUTE I, et al. Structure and dynamics of the active human parathyroid hormone receptor-1 [J]. Science, 2019, 364(6436): 148-153. 

[19] HUA T, VEMURI K, NIKAS S P, et al. Crystal structures of agonist-bound human cannabinoid receptor CB1 [J]. Nature, 2017, 547(7664): 468-471. 

[20] MAO C, SHEN C, LI C, et al. Cryo-EM structures of inactive and active GABAB receptor [J]. Cell Res, 2020, 30(7): 564-573. [21] YANG F, MAO C, GUO L, et al. Structural basis of GPBAR activation and bile acid recognition [J]. Nature, 2020, 587: 499-504.

[22] YANG S F, WU Y R, XU T H, et al. Crystal structure of the Frizzled 4 receptor in a ligand-free state [J]. Nature, 2018, 560(7720): 666- 670. 

[23] LIU K, WU L, YUAN S, et al. Structural basis of CXC chemokine receptor 2 activation and signalling [J]. Nature, 2020, 585(7823): 135-140. 

[24] YU J, GIMENEZ L E, HERNANDEZ C C, et al. Determination of the melanocortin-4 receptor structure identifies Ca(2+) as a cofactor for ligand binding [J]. Science, 2020, 368(6489): 428-433. 

[25] LIN X, LI M, WANG N, et al. Structural basis of ligand recognition and self-activation of orphan GPR52 [J]. Nature, 2020, 579(7797): 152-157. 

[26] PENG Y, MCCORVY J D, HARPSOE K, et al. 5-HT2C receptor structures reveal the structural basis of GPCR polypharmacology [J]. Cell, 2018, 172(4): 719-730.

 [27] EDDY M T, LEE M Y, GAO Z G, et al. Allosteric coupling of drug binding and intracellular signaling in the A2A adenosine receptor [J]. Cell, 2018, 172(1/2): 68-80.

 [28] LIU J J, HORST R, KATRITCH V, et al. Biased signaling pathways in β2-adrenergic receptor characterized by 19F-NMR [J]. Science, 2012, 335(6072): 1106-1110. 

[29] SUSAC L, EDDY M T, DIDENKO T, et al. A2A adenosine receptor functional states characterized by (19)F-NMR [J]. Proc Natl Acad Sci USA, 2018, 115(50): 12733-12738.

[30] YE L, VAN EPS N, ZIMMER M, et al. Activation of the A2A adenosine G-protein-coupled receptor by conformational selection [J]. Nature, 2016, 533(7602): 265-268.

[31] NYGAARD R, ZOU Y, DROR R O, et al. The dynamic process of β2-adrenergic receptor activation [J]. Cell, 2013, 152(3): 532-542.

[32] LATORRACA N R, VENKATAKRISHNAN A J, DROR R O. GPCR dynamics: structures in motion [J]. Chem Rev, 2017, 117(1): 139-155. 

[33] SUOMIVUORI C M, LATORRACA N R, WINGLER L M, et al. Molecular mechanism of biased signaling in a prototypical G protein-coupled receptor [J]. Science, 2020, 367(6480): 881-887. 

[34] VENKATAKRISHNAN A J, DEUPI X, LEBON G, et al. Diverse activation pathways in class A GPCRs converge near the G-proteincoupling region [J]. Nature, 2016, 536(7617): 484-487. 

[35] PANDY-SZEKERES G, MUNK C, TSONKOV T M, et al. GPCRdb in 2018: adding GPCR structure models and ligands [J]. Nucleic Acids Res, 2018, 46: 440-446. 

[36] TRZASKOWSKI B, LATEK D, YUAN S, et al. Action of molecular switches in GPCRs—theoretical and experimental studies [J]. Curr Med Chem, 2012, 19(8): 1090-1109. 

[37] ISHCHENKO A, WACKER D, KAPOOR M, et al. Structural insights into the extracellular recognition of the human serotonin 2B receptor by an antibody [J]. Proc Natl Acad Sci USA, 2017, 114(31): 8223-8228.

[38] SCHONEGGE A M, GALLION J, PICARD L P, et al. Evolutionary action and structural basis of the allosteric switch controlling β2AR functional selectivity [J]. Nat Commun, 2017, 8(1): 2169.

[39] ALHADEFF R, VOROBYOV I, YOON H W, et al. Exploring the free-energy landscape of GPCR activation [J]. Proc Natl Acad Sci USA, 2018, 115(41): 10327-10332.

[40] ROTH B L, IRWIN J J, SHOICHET B K. Discovery of new GPCR ligands to illuminate new biology [J]. Nat Chem Biol, 2017, 13(11): 1143-1151.

[41] KATRITCH V, FENALTI G, ABOLA E E, et al. Allosteric sodium in class A GPCR signaling [J]. Trends Biochem Sci, 2014, 39(5): 233-244.

[42] NGO T, ILATOVSKIY A V, STEWART A G, et al. Orphan receptor ligand discovery by pickpocketing pharmacological neighbors [J]. Nat Chem Biol, 2017, 13(2): 235-242. 

[43] ZHOU Q, YANG D, WU M, et al. Common activation mechanism of class A GPCRs [J]. eLife, 2019, 8: 50279. 

[44] THOMPSON M D, HENDY G N, PERCY M E, et al. G proteincoupled receptor mutations and human genetic disease [J]. Methods Mol Biol, 2014, 1175: 153-187.

 [45] ERDELYI L S, MANN W A, MORRIS-ROSENDAHL D J, et al. Mutation in the V2 vasopressin receptor gene, AVPR2, causes nephrogenic syndrome of inappropriate diuresis [J]. Kidney Int, 2015, 88(5): 1070-1078. 

[46] PASEL K, SCHULZ A, TIMMERMANN K, et al. Functional characterization of the molecular defects causing nephrogenic diabetes insipidus in eight families [J]. J Clin Endocrinol Metab, 2000, 85(4): 1703-1710.

文章导航

/